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This paper presents a new method to simulate liquid—vapor flows with phase change
using a phase-field-like approach. In this method, the liquid—vapor interface is de-
scribed as a three-dimensional continuous medium across which physical properties
have strong but continuous variations. This continuous variation is made possible by
imposing that the internal energy of the fluid depends on its density gradient. This
description, called the second gradient theory, is numerically attractive since a single
system of partial differential equations (PDES) is necessary to determine the flow in
the entire two-phase system, the phase change, the displacement of the interfaces,
and their change in topology being a part of their solution. However, to solve these
PDEs using a reasonable number of grid points on a fixed grid, the interfaces need to
be artificially enlarged. It is shown that this artificial enlargement can be thermody-
namically consistent if the thermodynamic behavior of the fluid is modified within
the binodal curve. The consequences of this thermodynamic modification are studied
in detail. In particular it is shown that, within the frame of the second gradient theory,
the interface thickness and the surface tension vary with the mass and heat fluxes
across the interface and that these variations increase with the thickness of the inter-
face. As a consequence, for a given accuracy, an upper bound exists for the interfacial
heat and mass fluxes that can be simulated. Examples of applications in one and two
dimensions show the potentialities of the method presented, in particular to deal
with moving contact lines, the description of which is a part of the second gradient
theory. © 2001 Academic Press

1. INTRODUCTION

Complex liquid—vapor flows with phase change are often encountered in industrial
plications such as heat exchangers, nuclear reactors, boilers, etc. Their better understa
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requires experimental investigations as well as the development of analytical models. Di
numerical simulations can be a way to help interpret experimental data and understand |
physical phenomena that can then be used to develop analytical models. For that purj
the use of the direct numerical simulation is already quite common in single-phase fl
dynamics. It is not yet the case in two-phase flows with phase change, because the nu
ical problems encountered to simulate such flows are much more complicated. The

issue that must be faced is the tracking of a surface of discontinuity on a fixed numer
grid. Several methods proved their efficiency to solve this problem; the most common o
are the volume-of-fluid (e.g., [22]), front-tracking (e.g., [36]), and level-set methods (e.
[34]). Nevertheless, these methods mainly deal with immiscible fluid systems. Indeed
such flows, the speed of displacement of an interface is equal to the velocity of the fiL
(gas and liquid) at the interface. Therefore, knowing the velocity field, it is quite easy
interpolate it at the interface and move the interface accordingly. When phase change e
the problem is more complicated because three different velocities exist at an interface
velocities of the liquid and vapor phases and the speed of displacement of the interface.
interpolation procedure is then no longer trivial. Juric [18, 19] showed that it was nevertl
less possible to determine the speed of displacement of an interface in such a case by

an iterative procedure to satisfy a Clapeyron’s relation at the interface, and he applied
procedure to the front-tracking method. More recently, this method has been applied tc
volume-of-fluid method [38].

In all the methods using a fixed grid on which the interfaces of the system move (
group to which the methods previously cited belong) the concept of continuous surf
tension (CSF) is used (e.g., [3]). Since the equations of motion of the two-phase systen
solved on a fixed grid and since in general the interface does not intersect the grid po
surface tension must be transformed into a volumetric force. More generally, for numer
reasons, the interface is spread on the fixed mesh and the equations of motion are
solved for variables that vary continuously across three-dimensional interfacial zones |
numerically created.

Inthis paper, we wantto study how far one can go using this concept of a three-dimensit
continuous interfacial zone that is numerically convenient to simulate liquid—vapor flo
with phase change: instead of dealing with discontinuities, one deals with smooth va
tions, which is numerically simplex. This kind of approach, generally called the phase-fit
method, has recently become popular, as shown in [1] for its applications in fluid mechan
The starting point is the following: if equations of motion have to be written for continuot
variables, these equations should be derived by using general physical principles, w
should preserve the physical coherence of the model used within interfacial zones. Sinc
nineteenth century, it is known (at least for equilibrium states) that a liquid—vapor interfe
can be described as a three-dimensional continuous medium using the so-called val
Waals, Cahn—Hilliard, or second gradient theory, the last being briefly presented in Sectic
This theory, in which it is assumed that the internal energy of the fluid depends not only
its entropy and density but also on its density gradient, ensures a perfect thermodyn:e
consistency of the equations describing the motion of a fluid within a liquid—vapor inter
cial zone. It must be noted that a similar theory is currently extensively applied to simul
solidification problems and has given rise to the so-called phase-field models. These
ods have already been applied to study many problems such as dendrites (e.g., [39]), b
alloys (e.g., [2]), and anisotropic interfaces (e.g., [24]) for instance. One of the main r
erence papers to these methods is [27], in which it is stated that, for the temperature
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the energy may be independent variables, the appropriate thermodynamic potential
no longer be the free energy but rather the entropy. Therefore, it is stated that the ent:
depends not only on an “order paramet:t but also on its gradient. In this paper, it is
shown that, for liquid—vapor systems, a complete system of balance equations, consis
with the second principle of thermodynamics, can be found by replacing the free enel
not by the entropy, as in the phase-field models, but rather by the internal energy. The o
parameter is then the fluid density, which has a clear physical meaning. To our knowledg
attempt has been made to model liquid—solid systems for which the order parameter we
be the entropy, which then would have a clear physical meaning, and the thermodyna
potential would be the internal energy.

The second gradient theoryasriori dedicated to describe physical liquid—vapor inter-
faces and is therefore generally used to study physical systems close to the critical p
where the interface thickness is relatively large. A review of these kinds of applications ¢
be found in [1]. However, for more common applications, the temperature of a systen
not close to the critical temperature of the fluid and the liquid—vapor interfaces are theref
very thin, i.e., of the order of a fedngstoms. If this theory had to be used just as it is,
the grid spacing should be of the order of a fAwgstims, which means that about one
hundred million points regularly spaced would be necessary to solve a one-dimensic
problem which is only one centimeter long. That would be of course of no interest. T
theory must therefore be adapted such that the thermodynamic coherence of the eque
of motion of a fluid within the interfacial zones is maintained while the interfacial thickne:s
is artificially enlarged, so that a standard grid can capture it. It is shown in Section 3 t
such an adaptation is possible but requires a modification of the thermodynamic beha
of a fluid inside the interfacial zone, or more precisely inside the binodal region. It must
noticed that this kind of approach has already been successfully used for immiscible flt
[14], but it appears that liquid—vapor phase change makes the problem more complica
as will be discussed in Section 3.

Since the thermodynamic behavior of the fluid is modified for numerical purposes, it mi
be ensured that important macroscopic properties are not modified too much. This stuc
made in Section 4. In particular, it is shown that the values of the radius of the inclusic
(bubbles or drops) and the interfacial mass fluxes as well as the interfacial heat fluxes
can be correctly simulated are limited. It is our current understanding that these limitatic
are the inherent consequences of the thermodynamically consistent model used and w
therefore be difficult to eliminate. These limits are however clearly known. In Section
applications in one and two dimensions are presented using the method proposed. In't
applications, phase change always occurs, at least locally, even though some of the sys
are isothermal (in these cases, phase change is driven by local depressurization). Inc
in the frame of the second gradient theory, phase change cannot be eliminated (unles
latent heat of evaporation is set to infinity, which has not been considered in this wor
Section 6 presents some conclusions and perspectives to this work.

2. INTRODUCTION TO THE SECOND GRADIENT THEORY

Classically, at a macroscopic scale, an interface between a liquid and its vapor,
more generally between two fluids, is modeled as a surface of discontinuity endowed v
properties, the most important of which being surface tension (e.g., [9]). However, a
microscopic scale, an interface is a volumetric transition zone across which the molec
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density for instance varies continuously. Therefore, it would be satisfactory to describ
liquid—vapor system, including the interfaces, by the general equations of fluid mechan
The simplest way to determine such equations is to consider that the internal energy o
fluid depends not only on its entropy and density but also on its density gradient. Inde
van der Waals [37] first showed that to model an interface as a three-dimensional contint
medium, the energy of a fluid particle must depend not only on its density (if it is assurr
that the fluid is at thermal equilibrium) but also on its density gradient,

(Vp)?

F=F° A :
(o) +4—

1)

whereF is the volumetric free energy of the fluie? is its classical part, and is the
capillary coefficient, generally assumed to be constant.

This dependence on the density gradient explains the existence of a finite thickness ¢
interface as well as the existence of a surface tension.

Korteweg [21] later showed that the general constraint within a liquid—vapor interf
cial zone also depends on the density gradient. Cahn and Hilliard studied interface
equilibrium separating fluids of different natures [4] using the same concept of an ene
dependence on a general phase-indicator function.

2.1. Thermodynamic Modeling

Rocard [30] for instance clearly showed that the form of the free energy given by (1)
be explained at the molecular scale by using a mean field theory. Indeed, within a liqu
vapor interfacial zone, the density of particles surrounding a test particle no longer he
spherical symmetry and making a Taylor expansion of order one of this density of partic
in the direction normal to the interface, one shows that to the “classical” interaction ene
depending only on the density must be added an energy proportional to the square o0
density gradient as postulated in Eq. (1). Such a fluid is said tnbewed with internal
capillarity. Hence, it clearly appears that the introduction of a dependence of the energ
a fluid on its density gradient corresponds to a higher order modeling of it (as it is done
a Chapman-Enskog expansion in gas dynamics, for instance by &ed429]).

The equilibrium state of a fluid endowed with internal capillarity is such that its fre
energy is minimum. For a one-dimensional problem in a Cartesian system of coordina

one then has
z+ d,o 2
s [ {F%Hx() +L1p]dz=o, @)
7 dz

wherel ; is a Lagrange multiplier accounting for the constraint that the system is close
i.e., its mass is imposed.
Therefore, the density profile(z) at equilibrium must satisfy the differential equation

2

d<p
)LE = u(p) — Ly, 3

whereu is the chemical potential ; is thus interpreted as the chemical potential at satu
ration.
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Using this density profile at equilibrium, it can then be shown that the expression
the energy concentrated at the interface (sometimes called the excess energy), which

surface tension, is given by
z+ d,o 2
= Al —) dz 4
o= [ +{G) e @

The thermodynamic theory presented above for an isothermal system can be extend
a nonisothermal system, for which it is assumed that the internal energy of the fluid depe
not only on its density and entropy, but also on its density gradient:

u=u(s, p, (Vp)?). (5)

Note that this model can be extended by accounting for a dependence on the entropy
dient. However, no clear consequence of this other dependence could justify its introduc
to simulate the physical phenomena that are the subject of this study.

2.2. Equations of Motion of a Fluid Endowed with Internal Capillarity

So far, a thermodynamic description of a fluid endowed with internal capillarity has be
given. Equations of motion of such a fluid have then to be derived. Several approaches
possible and are discussed in [33]. The details of their derivation can be found in [6]
a Hamiltonian approach and in [15] for a derivation using the principle of virtual work. |
is found that the partial differential equations which govern the motion of a fluid endow
with internal capillarity are then

3
8_‘t’+v.(pV)=o, (6)
dv D
pHZF_Vp—V.(Wp@Vp)JrVT, (7)
de b dp
P =F-VHV- (=Pl =aVp@Vp+7°) - V)+ V- (2Vpr | =V -q (8)

wherep is a pressure (defined by (9))js the capillary coefficient (defined by (10)° is
the dissipative part of the stress tengis the specific total energg,is the heat flux, and

d
p= pz<au> —pV - (AVp) ©)
P/ s.(vpy?
; au
2 20(Gwm),, o

This system needs to be closed by giving the expressions for the specific internal ent
ues, p, (Vp)?) (sincep andi depend om), the dissipative tensar®, and the heat flug.
The expression for the specific internal energy and its consequences will be studied ir
next sections. By using the thermodynamics of irreversible processes, Seppecher [32]
a general expression far® andg, and five coefficients appear in the expressiorr Bf
for instance. Since the physical significance of all these coefficients is to our knowlec
not firmly established, we keep a Newtonian expressionrfoi(an assumption which is
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generally made and which gives good interpretations of macroscopic phenomena as st
in [33] for instance). Similarly, we keep a classical Fourier’s law for the heat flux.
Hence,

7P = vtr(D) + 2uD, (11)
whereD = (VV + VTV)/2 and

The fact that the Cahn—Hilliard theory accounts for surface tension as a volume
property has already been shown in Section 2.1 where surface tension has been interg
as an energy per unit area. Given the momentum balance equation (7), an analysis c
efforts applied on a elementary volume placed within an interfacial zone shows (e.g., [
thatat equilibriumthe pressure in the tangential direction of the interface is weaker than
the normal direction. A tension is thus applied in the tangential direction of an interfax
the integration of which is interpreted as surface tension. The expression thus found is

2.3. Some Important Comments

The system of Egs. (6)—(8) has been established for an interfacial zone, where the de
gradient has a nonnegligible contribution to their energy. However, within the phases
contribution can be neglected and it is straightforward to show that in that case Egs. (6):
reduce to the classical equations of motion of a single-phase fluid.

That means thagolving only these three continuous partial differential equations wil
determine the whole liquid—vapor two-phase flow, with the movement of the interfac
including breakup and coalescence phenomena, being just a part of the soliiterefore,
virtually no particular treatment of the interfaces is needed, which means that the
difficulty encountered in numerical methods dedicated to the direct numerical simulat
of two-phase flows could be overcome.

However, if one wants to benefit from this virtual advantage, a difficulty must previous
be resolved. Indeed, a simple analysis of orders of magnitudes (e.g., [7]) shows that
relevant length scale associated with the equation of motion of a fluid endowed with inter
capillarity is about 10'° m. Since surface tension appears as an integral property, t
interfacial zones must be numerically resolved, and therefore several discretization pc
should be used to capture an interface. Hence, to solve a one-dimensional problem w
is 1 mm long, about 10,000,000 discretization points uniformly spaced are needed, wi
is absolutely impossible and of no interest.

A way to overcome this issue is presented in the next section.

3. MODIFICATION OF THE THERMODYNAMIC BEHAVIOR OF A FLUID

The question to which we will give an answer in this sectioisig:possible to artificially
enlarge a liquid—vapor interfacial zone without losing the thermodynamic coherence of
second gradient model?

3.1. The Vicinity of the Critical Point

The vicinity of the critical point is particularly appropriate to the application of the
second gradient theory. Indeed, let us consider a liquid—vapor system at equilibrium
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temperature slightly different and lower than the critical temperafuef a fluid. Under
these conditions, the thickness of a liquid—vapor interface is typically of the order of o
micrometer. That means that close to the critical point, the use of a three-dimensional m
to describe a liquid—vapor interface is fully justified, which is the reason this model is mair
used to study critical phenomena (e.g., [11]).

Furthermore, in the vicinity of the critical point, simplifications of the equation of stat
of a fluid can be made [31]. For instance, it can be shown that the dependence on the er
W defined as

W(p) = F(p) — (F(p5%) + 10 — 03%)). (13)

wherep%@is the chemical potential at saturatigrii®' andp® are the densities of the vapor
and liquid phases at saturation respectively, Arid a “constant” (all these properties are
functions of the temperature), takes the following particularly simple form:

W(p) = A(p — 0529 (0 — 2. (14)

Consider a plane interface at equilibrium in the vicinity of the critical point. Assumin
that the capillary coefficient is constant, the momentum balance equation can be integr
analytically and it is found that the density profile across a plane interface at equilibriun

sat sat sat __ .sat sat __ . sat
p(2) = AT Py + A Py tanh| A P ) (15)
2 2 J2A

Under these conditions, the interface thickness and of the surface tension are given

4 Py
h= e [ 5h (16)

sat _ sat)3
o = WM. (17)
Equations (16) and (17) show that the second gradient theory predicts that in the vicil
of the critical point, the thickness of an interface at equilibrium is proportiong/XgA
and its surface tension is proportional 46, A. This remark will be important to better
understand the way an interface can be artificially enlarged.
This is done in the following section.

3.2. Artificial Enlargement of an Interface: Main Idea

We recall that our main purpose is to artificially enlarge an interface so that a standard m
can capture it. The thickness of an interface is then a parameter, whose valuepriost
be given following numerical arguments (size of the system studied, computer power, ef

The study of an interface at equilibrium in the vicinity of the critical point, presented i
Section 3.1, indicates that the thickness of such an interface is proportiafial kience, an
artificial enlargement can be achieved by increaginigowever, its surface tension is also
proportional toy/A and therefore, increasing the capillary coefficient will increase the valt
of the surface tension of the fluid. This is not acceptable since our main goal is to perfc
direct numerical simulations for which surface tension is an important physical propert)
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This issue can be overcome by decreasing the value of the coeffitiahthe same
rate ash is increased (see Egs. (16) and (17)). Hetioe thickness of an interface can be
increased, without changing the value of surface tension

These considerations show that it should be possible to artificially enlarge an interf
without modifying the thermodynamic coherence of the second gradient model provided
the thermodynamic behavior of the fluid is modified inside the interfacial zone, or more p
cisely, ifthe dependence on the density of the thermodynamic functions are modified for c
sity values between the values of the densities at saturation, that is, inside the binodal re

Another issue is then encountered. Indeed, modifying the val#ernbdifies the ther-
modynamic behavior of the fluid for all the values of the density as shown by relation (1
In particular, the derivativeéd P/dp) will be modified at the phase densities at saturation
which means that the speed of sound of the liquid and vapor phases will be modified. T
is not acceptable if the goal is to perform direct numerical simulations.

The crux is then to modify the equation of state of the fluid so that the interface can
artificially enlarged, but maintaining a certain regularity near the binodal curve, i.e., 1
values ofp closed topS? and pSa.

A full solution to this problem is presented in the next section.

It must be emphasized that this latter issue makes the problem of using a diffuse inter
method to simulate phase-change phenomena more difficult than to simulate immisc
two-phase flows. Indeed, Jacqmin [13, 14] developed the same idea as the one presi
above but for immiscible fluids for which the Cahn—Hilliard theory is us@the issue of
maintaining the equation of state of the bulk phases does not exist in that case, since
phases are supposed to be incompressible.

3.3. Artificial Enlargement of an Interface: Mathematical Implementation

The best way to find the thermodynamic behavior of a fluid that would satisfy all
conditions that must be recovered is to work directly on the “classical” free energy of the fl
and on its capillary coefficient supposed to be constant (or a function of the tempera
only). The reason is that once the thermodynamic behavior is given, we have show
Section 3.1 that all the interfacial properties are just consequences.

Let us first list the conditions that must be satisfied:

¢ The value of the thickness of an interface at equilibriuii can be chosen arbitrarily
(from numerical arguments).

e The value of the surface tension at equilibriarif can be chosen arbitrarily (from
experiment).

e The bulk phase thermodynamic properties can be chosen arbitrarily (from experim
or models).

e The pressure as a function of density must be once continuously differentiable (c
tinuous speed of sound).

It is proposed to search for the modified thermodynamic fundtiBi?d(p) using
O.Sﬁt

WTp) = L (@))% (18)

! Note that in the case of immiscible fluids a color funct@rfwhich has a value of one in a phase and zero in
the other) is used as the phase parameter, the density being the phase parameter in our case.
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FIG. 1. Shape of the functiom (r) for water @ 1 K below the critical point and an artificial thickness of an
interface at equilibrium equal to 1 mm.

where ¢ is a nondimensional function of the nondimensional variabfe (o — p52)/

(plsat _ psat)
b ).

Let us define the functioi (r) as

o(r)
max(¢)

Jamet [15] showed that the shape of the functign) mustbe the one shown on Fig. 1.

This shape is easily understood. It has been shown in Section 3.2 that one of the n
requirements that must be satisfied to enlarge an interface is to decrease the vaine of
the vicinity of the critical point, or more generally to decrease the maximum of the functic
W(p). If that were the only requirement, then the functib¢r ) would still have a parabolic
shape. However, it is moreover required that the funcR/dp) (o) keep its value and
be continuous ap = pS andp = pf. It is straightforward to show that this derivative
is linked to the derivative of/W(p). Therefore, the derivative of/ W(p) must be kept
constant and its maximum must be decreased. If this decrease is huge, typically of the ¢
of 10,000 in the conditions of the Fig. 1, then the initially parabolic shapg\f(p) will
be drastically shrunk only in its medium part, and its tangengs-atoS®andp = p will
be kept constant, so that its dimensionless fgrm) mustbe the one shown on Fig. 1.

Given the functiony(r), all the thermodynamic properties of the fluid, such as the
pressure for instance, can be deduced by derivation. For instance, it can be shown tha

y(r) = (19)

sat
prod ) _ pat _ 2;;& . (plsat > psat‘(’j_‘f _ %gb), (20)
Figure 2 shows the modified equation of state for watériabelow the critical point for

an artificial thickness of an interface at equilibrium arbitrarily equal to 1 mm. For the sa
of simplicity, it has been assumed that the van der Waals’ equation of state is valid in
bulk phases and is plotted inside the binodal region as a reference equation of state. It c:
seen that the modification of the equation of state is really drastic within the binodal regi
The reason is that in the case considered here, the artificial enlargement of the inter
thickness is of the order of 10,000, which corresponds to a decrease of the maximur
(dP/dp) (achieved in the middle of the binodal region) of about 10,000 (see Egs. (16) a
(17) for which A is roughly proportional to maxl P/dp)).
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FIG. 2. Modified van der Waals’ equation of stagv) for water d 1 K below the critical point such that the
artificial thickness of an interface is equal to 1 mm. (a) van der Waals’ and modified equations of state for wt
the pressure scale is adapted to the van der Waals’ equation of state. (b) van der Waals’ and modified equatit
state for which the pressure scale is adapted to the modified equation of state.

The procedure described above to find the modified thermodynamic behavior of a fi
is valid if the system is isothermal: the functigr(r ) and then the modified volumetric free
energyF™°d(p) can be found for any given temperature. However, Jamet [15] showed tt
working directly with the free energy to seek a modified thermodynamics keeps the wi
thermodynamic coherence of the model and that Maxwell’s thermodynamic relations
recovered

It must be emphasized that the modified thermodynamics presented above does not ck
the values of the densities at saturation, which means that the binodal curve is not modi
Therefore,any thermodynamic function is unchanged at saturatenmd particularly the
specific enthalpy. The latent heat of vaporizatiofi defined as

££'Sat_ ilsat (21)

IU

is therefore not modified by the modified thermodynamics proposed here

4. SOME CONSEQUENCES OF THE MODIFICATION OF THE THERMODYNAMIC
BEHAVIOR OF A FLUID

The purpose of this section is to study the physical consequences introduced by the dr
modification of the equation of state necessary to artificially enlarge an interface as sh
in Section 3.

4.1. Radius of Inclusions That Can Be Simulated

According to Laplace’s theory of capillarity, the pressures of the phases surrounding
inclusion of radiusk at equilibrium are given by (e.qg., [5])

pgat 20
Pv _ Psat = nisat_ satﬁ (22)
P 0Oy
and
sat 2
- P2 (23)

plsat_ psat R ’
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FIG. 3. Characteristic points of the liquid and vapor phases of a bubble and a drop in a Clapeyron diagrar
where

1 f droplet
. {+ or a drople (24)

T=1-1 fora bubble

As shown in Fig. 3, these pressures are such that one of the phases is metastable
located in the binodal region, where the equation of state is modified. Therefore the relati
(22) and (23) may not be verified and the Laplace relation is likely to be violated for
modified equation of state.

The equilibrium state of a spherical inclusion described by the second gradient theor
such that (e.g., [10])

00 2
o pm2 [, 2
0

This relation is general and, if the radius of the inclusion is greater than the interfe
thickness ([15]), is the Laplace relatiofihe Laplace relation is therefore not violated by
the modified equation of state introduced in Section 3

Moreover, since the modified thermodynamics considered in Section 3 is such that
function (d P/dp)(p) is continuous, especially on the binodal curve, an analysis based
Taylor expansions of order one (80 /R) shows thaEgs. (22) and (23) are satisfied for
any modified thermodynamicthe influence of the modification of the equation of state
appears only if the Taylor expansions are made up to an order three,

d 20\ °

- A =2 (26)

' R

where
d?pmed (psat) _ dzl (psat)
gsaté plsatpsat d,O2 P d,O2 P
B3t pfat— psat 4 d?u 3

P ( ) d—pz(p;ar) (27)

psaté (plsat_ ls}at) _ n(plszat+ psat)

P 2

and R , is the pressure in either the liquid or the vapor phase for nonmodified thermoc
namics, and3|'fj)°d is this pressure for a modified equation of state.
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FIG. 4. Typical values of 2 for water at 30 K below the critical point for different values of the artificial
thickness of an interface at equilibrium.

Let us suppose that, for any reason, it is acceptable to make anceref,, on the
absolute pressure level, wherés defined as

P|T)Od_ Pl,v
20/R

(28)

Equations (26) and (28) show that inclusions whose radii are greater than alimit
given below will introduce an errar less thargjn,.

Rim = 20/1§5% (29)

Typical values of #./]€58] for water are plotted in Fig. 4 for different values of the
temperature and of the artificial interface thickness at equilibrium. This figure shows tha
for examplegim is equal to 16* and if the artificial interface thickness is equal to 0.1 mmr
at 1 K below the critical point, then the radius of the inclusions that will satisfy the criteric
(i.e.,e < 10~%) must be greater than about 1 mm. For radii smaller than 1 mm, the press

level surrounding the interface will not satisfy the criterionereven though Laplace’s
relation will always be satisfied.

4.2. Interfacial Mass Fluxes That Can Be Simulated

The issue that will be handled in this sectiortagsknow whether the thermodynamics
modification introduced in Section 3 modifies the speed of displacement of an interfa
zone during a phase-change process

For this purposea stationary, one-dimensional, isothermal problenstudied. Such a
problem corresponds to the physical situation sketched in Fig. 5. Notphlhae change
exists even though the system is isotherrRalysically speaking, phase change in this
case is due to depressurization: as the piston is withdrawn, the vapor pressure decr:
and the liquid and vapor phases are no longer in thermodynamic equilibrium. To reco
thermodynamic equilibrium, some liquid must vaporize. This vaporization consumes ene
that is transported toward the interfadga conductive heat fluxes. These heat fluxes nee
nonzero temperature gradients. In this section, it is assumed that the thermal conductiv
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FIG.5. Sketch of a one-dimensional isothermal phase-change problem.

large, the phase change is slow, and the phases can be considered isothermal. The de
conditions under which this asumption is valid can be found in [15].

If the piston and wall velocities are constant then the speed of displacement of the inter
is constant and given by mass conservation ( e.g., [9]):

vi= A= eV (30)
Pl — Py
The bulk densitieg, andp, are thus such that (e.g., [12])
02

P(p) = P TE(L 1)
sat M2/ 1 1 (31)

P(o) = P>+ f(ﬁ - F)’

where

e = (Vi = V) = pu(Vy — V. (32)

Equations (31) show that the liquid and the vapor are respectively subcooled and su
heated; the phase characteristic points are therefore located outside the binodal curve

This one-dimensional, isothermal, stationary problem (in the frame of reference of 1
interface) can be studied using the second gradient model and it is found that the pres:s
of the phases are given by

{P(UI) —[P(vy) — (v —v,)] =0
(33)

UT”{P(v) —[P(v,) —m?(v —v,)]}dv =0,
wherev = 1/p is the specific volume anih = pV = const

Equations (33) is a generalization of the Maxwell’'s rule [23] in the presence of
interfacial mass transfer (e.g., [7]). It must be emphasized that these relations are sati
whatever the equation of stal(v).

A Taylor expansion of order one in? of Eq. (33) can be made [15] which leads exactly
to the relations (31) (in whicln; is replaced byh). Since these relations imply that the
phases are not metastalaay artificial enlargement of an interface does not modify the bull
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FIG. 6. Evolution of density profiles with the interfacial mass flux (in k§ s1*) for water & 1 K below
the critical point. (a) Van der Waals’ thermodynamics. Note the symmetric effect of the recoil pressure on pt
densities. (b) Modified thermodynamics such that the artificial thickness of an interface at equilibrium is eque
1 mm.

phase densitieBack in an absolute frame of reference, since the piston and wall velociti
V, andV, are parameters of the problethe speed of displacement of the interface givel
by (30) is not modified by its artificial enlargement

Casal and Gouin [7] showed that the second gradient theory predicts a variatior
surface tension with the interfacial mass flux, and the issue is then to know how an artifi
enlargement modifies such a variation.

Figure 6 shows interface density profiles1aK below the critical point crossed by
different mass fluxes for a van der Waals’ equation of state and for a modified equat
of state. This figure shows that in the case of a modified equation of state, the interf
thickness is more sensitive to an interfacial mass flux than in the case of a van der We
equation of state. This increased sensitivity has two drawbacks: first, if the mass flux is
high, the interface thickness will no longer be captured and second, an induced variatio
the surface tension could corrupt the physical relevance of a simulation.

Taylor expansions to first order im? of the density profile show that the interface
thickness and the surface tension are given by the approximations [15]

2
h — hs ~ _mZhsat ('O|sat B psat) (34)
hsat %Satpfatpsat(pfat + psat)
and
2
P Ut -
osat %satplsatpgat( plsat + pgat)

The linear variation with the interface thickness explains the difference between
profiles of Figs. 6a and 6b.

Equations (34) and (35) must help to decide whether the method proposed can be us
perform a relevant numerical simulation. Let us suppose for instance that, for any rea
it is acceptable to make a relative error in the value of the surface tension of 1%. At ]
below the critical point, this means that the interfacial mass flux must be lower than 7
m? s~1, which corresponds to a piston velocity equal to about 5.4 mifics the problem
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sketched in Fig. 5. If this value is considered to be too small for the physical paramet
used in the desired numerical simulation, the only solution is to change the mesh siz
that the artificial interface thickness can be decreased.

4 3. Interfacial Heat Fluxes That Can Be Simulated

When a liquid—vapor interface is modeled as a discontinuous surface, it is gener:
assumed that the temperature at the interface is equal to the saturation temperature. |
second gradient theory, the temperature in the interfacial zone is given by the solutiot
(6)—(8) and the issue is therefot® know whether the temperature within an interfacial
zone is at least close to the saturation temperature

Let us considea one-dimensional liquid—vapor system under mechanical equilibrium i
which the vapor phase is superheated by a temperatdrand the liquid phase is subcooled
by the same temperatureT (see Fig. 7). The density profile should thus be such that th
interfacial zone is automatically located where the saturation temperature is reached.

This problem requires solving the momentum and energy balance equations (see EQ:
and (8))

dP d3p

Az~ Ma@ (36)
d / dT

(k=) = 7
dz( dz> 0 37)

where the capillary coefficientis assumed to be constant dnid the thermal conductivity
a priori function of p.

The coupling between Egs. (36) and (37) is mainly encountered through the depende
of the pressure on the temperature, that is, through the equation of state of the fluid wi
is likely to be modified as described in Section 3.

Typical density and temperature profiles for a van der Waals’ equation of state as wel
for a modified equation of state are shown in Fig. 8. In both cases, it can be se#rethal
saturation temperature is reached within the interfacial zone

Howeverwhen the heat flux is increased through an increase of the temperature differel
AT, Fig. 9 shows that the interface thickness varies, which implies also a variation of t
surface tension

LGS s AN 0000004

L

\zzzzzzz2z223 230 A% 77222224

>

p

FIG. 7. Sketch of a one-dimensional heat transfer across a liquid—vapor interfacial zone at mechanical e
librium.
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A first attempt to explain this variation can be found in [15], where it is assumed tt
the temperature gradient is constant (ike= cons). This attempt is based on a Taylor
expansion of order one iINT and leads to the approximations

h — hsat sat

~ _VT(hsat)2'0|sat+ pgat pU E

sat;
hsat 2 2Tsat(plsat _ psat)asatg(-r ) (38)
g - Gsat ~VT (hsat)z '0|Sat + pl?at 'ol?atﬁ %.(-I—sat) (39)
gsat 2 2T sat( plsat _ psat) ogsat ?
where
. Zpsat 2psat
E(T) = sat : sat < sat ; sat | (40)
9 Py P + Py
300 T T T
250
- L
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FIG. 9. Density profiles across an artificial enlarged liquid—vapor interfaé&'& 10-° m) at mechanical
equilibrium crossed by increasing heat fluxes.
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Equations (38) and (39) show ththie relative variation of the interface thickness and
the surface tension is linear in the temperature gradient within the interfacial zone a
quadratic in the interface thickness at equilibriuifhese variations are therefore more
sensitive to the interface thickness at equilibrium than they are in the presence of a n
flux. Jamet [15] showed that Egs. (38) and (39) give the right dependencié andhsa
but that the proportionality factor is underestimated by a factor 2 to 3 for water.

As an illustrative example, let us suppose that, for any reason, it is acceptable to ma
relative error of 1% on the value of the surface tensiarnl K below the critical point, for
the problem sketched in Fig. 7, the temperature gradient in the vicinity of the interface m
be lower than 0.65 K mt, which would correspond to a maximum value of the conductive
heat flux across the superheated vapor and the subcooled liquid equal of about 02 W
and an artificial interface thickness of F0m. If this value is considered to be too small
for the physical parameters used in the numerical simulation intended, the only solutio
to increase the mesh resolution to support a decreased artificial interface thickness.

This feature can sometimes be a limitation. For instance, in the simulation considere:
[38, p. 673], the present method could be used with an interface thickness at most el
to 0.25 mm if the relative error on the surface tension had to be less than 1%. The sec
gradient method would have required a mesh spacing about 10 times smaller than the
used in [38] with the most refined resolution, which would be prohibitive with no loce
mesh refinement.

5. APPLICATIONS

In this section, illustrative examples of preliminary results using the method presente
the previous sections are presented. Although they do not cover all the potential uses o
method, they are considered to be test cases before a complete simulation of a liquid—v
flow with phase change can be performed. A one-dimensional liquid—vapor phase-cha
problemisillustrated in Section 5.1; two-dimensional problems are presented in Section

5.1. One-Dimensional Phase-Change Problem

The solution to the problem considered (see Fig. 10) requires the resolution of the tr
balance equations (6), (7), and (8). To stress the importance of the change in thermodyna
introduced in Section 3, the results obtained for the classical van der Waals’ equation of s
will be compared to those obtained for a modified equation of state. It must be emphasi
that the size of the physical domain is very different depending on whether the equal
of state is modified or not, since the size of the domain is proportional to the interfa
thickness for a roughly constant computational time. In addition, even in the vicinity of tl
critical point, the physical interface thickness is very small and the size of the domain m
therefore be very small. In contrast, the use of the modified thermodynamics presente

Tw imposed Tsat imposed
Vapor Liquid
V =0 imposed Psat imposed

% 0 X

FIG. 10. Sketch of a one-dimensional vaporization problem.



LIQUID-VAPOR FLOWS WITH PHASE CHANGE 641

Section 3 allows the interface thickness to be chosen as an independent parameter (pro
that limitations exhibited in Section 4 are acceptable) and the size of the domaipdan
be chosen arbitrarily.

The fluid is water and the saturation temperature is equal to 646.3 K,3%= T, — 1K.
The results with a modified equation of state presented in the following are such t
hsat= 0.1 mm andxg = 2 mm. The artificial enlargement is thus close to 625.

The set of initial conditions for the computations presented in this section are 1
following:

e There is a zero velocity field on the whole domain.

e There is a linear temperature field frafp = TS¥ 4+ AT atx = —xoto TS*atx = 0,
with constant temperatuf®s® from x = 0tox = +xg andAT = +0.6 K.

e The density fields in the vapor phase (from= —xg to X = 0) and the liquid phase
(from x = 0 to X = +Xg) are first computed by modeling the interface as a discontinuit
and the profile is then smoothed in the vicinity of the interface (approximately frem
—hsa/2tox = +h%3/2) to recover the equilibrium thickness dictated by the second gradie
formulation; this initial density profile does not correspond perfectly to the equilibrium sta
but nevertheless leads to a decent initial transient.

Equations (6)—(8) are solved using a classical MAC scheme in space and a first-o
explicit Euler scheme in time. Special attention is paid to the boundary conditions for wh
we adapted the NSCBC approach of Thompson [35] and Poatsot[28] to impose the
boundary conditions prescribed in Fig. 10.

The results will be presented in a nondimensional form, introducing the following simg
scaling.

e For the sake of convenience, a characteristic conduction time derived from the va
Fourier number is used for the time scale;

sat, 2X, ZC
rcép” (2X%0) pv’ (41)
k,
wherep$®, Cp,, andk, are evaluated &k = 646.3 K.
e The length scale is chosen to ke
e The velocity scale is thereforsg/ . . This choice allows the results to be of order one.

The reduced quantities, t*, andV* that will be used in the following are respectively
defined ax* = x/xq, t* = t/z;, andV* = V/xo.

Figure 11 shows the density, velocity, and temperature profiles at the reduced*time
equal to 00.1,0.2,0.3,..... It is seen that the liquid is pushed out of the computatione
domain by the vapor produced at the interface. Figure 11b shows that, after a short trans
the velocity in the bulk phases is fairly uniform (slightly modified by the thermal expansic
in the vapor phase), whereas the velocity jump corresponding to the vaporization proc
is smoothed across the interface thickness.

Figure 12 gives a comparison between the reduced interface positiénx; /xo as a
function of the reduced time, calculated from the results of Fig. 11a and the one obtai
by an analytical model of a discontinuous interface.

In the analytical model, it is assumed that the interface is discontinuous and that
Péclet number is negligible. This last assumption is not completely valid in our examp
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FIG. 11. One-dimensional problem: Reduced time sequerite=(, 0.1,0.2,0.3,...) of the density,
velocity, and temperature fields versus the reduced space coordinate

if the physical properties are estimated usipfj + p5)/2 and(T,, + T5%)/2, the Rclet

number

. CpAT

Pe= ~ 0.47

(42)

isindeed not negligible, and that gives a good explanation to the slight discrepancies betw
the analytical results foPe= 0 and the numerical results given in Fig. 12. Indeed, the

0.8

0.6

0.4

0.2

— Numerical simulation
-~ - Analytical model with Pe=0

— — Analytical model with Pe=0.47

0
1]

0.2 04 0.6 08 1
t

FIG. 12. One-dimensional problem: Comparison of the numerical results with an analytical model showi
evolution of the reduced position of the interfageversus the reduced tiné.
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first-order correction accounting for a nonzeecRt number is given by an apparent latent
heat of vaporizatiope defined as

1
Lpe2 £<1 + 2Pe), (43)

where the Btlet number is estimated to be constant throughout the entire vapor ph
(Pe=0.47).

This correction accounts for the heat-capacity effectin the vapor phase, whichis decre:
when the temperature gradient decreases due to the motion of the interface. Figure 12 s
that the correction term has the proper order of magnitude, even though the correctic
not perfect, probably because of the variatiofCgfwith temperature.

Owing to the nonlinear effects induced by the variation of teel& number in space and
time, the numerical results reported in Fig. 12 can be considered satisfactory compare
an approximate analytical solution. Note that these good results are obtained even the
the interface was artificially enlarged.

5.2. Examples of Two-Dimensional Isothermal Flows

In this section, results of two-dimensional simulations will be presented. A first study w
be dedicated to the numerical convergence of the Laplace relation. The other applicat
are unsteady. However, for the sake of simplicity, isothermal systems are considere
must be emphasized thatyen though the systems are isothermal, phase change esists
explained in Section 4.2. However, since the systems considered are closed, phase cl
can only be local and is therefore limited.

5.2.1. Numerical convergence of the Laplace relatiofihe Laplace relation is the main
macroscopic consequence of the existence of surface tension. With the proposed me
surface tension is transformed into a continuous force within an interfacial zone tha
discretized with a finite number of grid points, and the convergence of the Laplace relat
must therefore be addressed. Moreover, it is believed that this convergence analysis i
most important one in order to understand convergence issues on more Macroscopic
coupled problems.

To perform this convergence analysis, the following parameters were chosen:

e The fluid is water,

e The system is isothermal at a temperature equal to 646.3 K (1 K below the criti
temperature),

e The system is two dimensional: a 2.7 mm by 2.7 mm square,

e The fluid mass is such that if the interface were a discontinuity, the radius of the va,
bubble would be equal to 1 mm,

e The surface tension, the vapor, and the liquid densities are approximately equa
7 x 1075 N/m, 182 kg/md, and 213 kg/rArespectively,

e The vapor and liquid phases are modeled by the van der Waals’ equation of state,

e The artificial thickness of the interface is equal to 0.1 mm.

Once asteady state is reached, the pressure difference between the center of the bubk
the square corners is measured. Note that the steady state is not an equilibrium state ¢
with the numerical method used to discretize the equations of motion, parasitic currents
observed, which are similar in shape to those reported in [3] for instance.
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FIG. 13. Convergence of the Laplace relationh, Dx, andPcare, respectively, the number of grid points on
one edger is the total number of grid points), the interface thickness, the mesh size, and the capillary press
(Pcappis the “measured” capillary pressure, wherPass the theoretical capillary pressure.)

Since the interface thickness is a parameter that can be chosen, we performed two
vergence studies. First, the interface thickness is fixed and the number of grid point
increased, thus increasing the number of grid points within the interface. Second, the n
ber of grid points is increased but the number of grid points within the interface is ke
constant, thus decreasing the artificial thickness of the interface. The results obtainec
given in Fig. 13.

Figure 13a shows that the convergence of the Laplace relation with an increasing nun
of grid points within the interfacial zone is quadratic. In contrast, Fig. 13b shows that, wh
the number of grid points is increased without increasing the number of grid points witt
the interfacial zone, the Laplace relation does not converges and that the relative err
nearly a constant (with a slightincrease). Therefore, it can be concluded that the error or
Laplace relation is due only to the truncation error introduced within the interfacial zone

Note that other numerical results, not reported here, showed that the pressure differ:
is proportional to the inverse of the bubble radius and that the error on the Laplace rela
does not depend on the bubble radius.

5.2.2. Coalescence of two bubbles in the absence of gravityhis section, we present
the ability of the method proposed to deal with topology changes. Figure 14 shows the t
evolution of two two-dimensional bubbles initially separated but nevertheless very close
each other. It can be seen that very rapidly the two bubbles coalescence and that the s
bubble thus created finally reaches an equilibrium state. The density fluctuations obse|
in the phases in the early stages of the coalescence are due to the pressure waves ger
during the process.

Even though the initial coalescence behavior certainly depends on the interface thicki
and on the numerical discretization, it must be emphasized that the change in the topo
is made at absolutely no cost. This property will be kept at no cost in three dimensions.
influence of the numerical parameters on coalescence and breakup will be investigate
the future.

It must be noticed that to be able to obtain this coalescence in a quiescent liquid,
bubbles have to be very close to each other (i.e., of the order of the interface thickne
Indeed, if the bubbles are too far apart, it is observed that the smaller one shrinks
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FIG. 14. Time sequence of the coalescence of two bubbles initially at rest in microgravity (low densi
in light and high density in dark). Fluid: wateT, = 646.3 K; equation of state: van der Waals= 1.773 x
107 Pant kg3; 4.2 x 2.8 um rectangle; 316« 210 grid; radii of the initial bubbles:.® and 035 um..

disappears while the bigger one grows accordingly. Thus no coalescence is observed.
behavior can be explained thermodynamically. It is well known that the equilibrium of
bubble in an isothermal and isobaric system is unstable (e.g., [5]); i.e., if the radius is slig
greater than the equilibrium radius, the bubble grows endlessly and if it is slightly smal
than the equilibrium radius, the bubble shrinks and disappears. It then appears that ir
closed system considered here, the bigger bubble imposes its pressure in the liquid
pressure outside the smaller bubble is bigger than the equilibrium pressure for the sm
bubble, which then shrinks.

It must be emphasized that the physical features of the coalescence simulated her
limited to the model considered and that no attempt has been made to account for phy
effects that affect the coalescence such as electrical interactions [8, 20, 26].

Spinodal decomposition is also a good example of large topology changes. Numer
simulations of spinodal decomposition using the van der Waals’ theory are reported in
literature [17, 25].
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FIG. 15. Time sequence of the impact of a rising bubble initially at rest on a wall. Fluid: whterg46.3 K;
equation of state: van der Waals= 1.773 x 107 Pa nf kg3; 2.5 x 2.5 um square; 10 100 grid; contact
angle: 90.

(4)

(h)

)

5.2.3. Static contact angle.In this section, we show the ability of the method proposec
to account for contact angles. The contact angle statics and dynamics described by
second gradient theory have already been studied theoretically by Seppecher [33]. The
here is just to show through some numerical examples that some important physical feat
are recovered numerically by the second gradient method.

Figure 15 shows the time evolution of a bubble rising toward a wall under the action
gravity. For the sake of simplicity, a van der Waals’ equation of state has been used.

It can be seen that the initial contact, as well as the evolution of the bubble once attac
on the wall, can be captured. This is an important feature of our method since, to |
knowledge, only one method is able to simulate a contact angle and a moving contact
in a rather general and numerically convenient way, this method being based on a sin
theory [14]. It is observed that immediately after the contact of the bubble with the we
the contact line moves very rapidly (with respect to the velocity of the bubble before t
contact), which is what is commonly observed. Afterwards the surface tension playsits
by preventing the contact line from moving too far and an equilibrium state is reached
which the bubble has a hemicylindrical shape.

In the present simulation, a constant value of the contact angle is imposed by the sin
boundary condition

n-vp=0, (44)

wheren is the unit normal to the boundary (i.e., the upper wall).
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(a) 0° {(b) 45°

(c) 90° (d) 135°

(e) 180°

FIG. 16. Equilibrium shape of bubbles after their impact on a wall. Fluid: wales; 6463 K; equation of
state: van der Waals; = 1.773 x 107 Panf kg~%; 5 x 1.5 um rectangle; 20& 60 grid; contact angle: from 0
to 180.

This condition imposes that the contact angle is equal t9®Bich is what is actually
observed in Fig. 15, particularly in the last frame corresponding to the equilibrium state

No contact angle variation with the speed of displacement of the contact line was
troduced in this simulation. Seppecher [33] showed that this dependence can be corr
captured by the second gradient theory. However, this dependence may be affecte
artificial thickening of the interface introduced for numerical purposes. This issue will |
addressed in the future.

Figure 16 shows different equilibrium shapes of a bubble attached on a wall correspon
to different contact angles. These equilibrium states were obtained by performing the s
simulation as the one presented in Fig. 15, in which the boundary condition (44) has b
adapted to account for the desired contact angle.

It can be seen that any boundary behavior can be simulated, from a completely wet
material, where the bubble remains almost cylindrical (the wall has no affinity for the vapc
to a completely nonwetting one, where the bubble tends to spread completely (the wall
no affinity for the liquid). All the intermediate behaviors can be simulated as well, as sho
in Fig. 16.

5.2.4. Contact angle hysteresisContact angle hysteresis is an important feature of .
moving contact line. Experimentally, it is observed that when a gas-liquid interface
contact with a solid wall moves in the direction oriented from the liquid to the gas, tl
contact angle, is greater than the contact angleobserved when the interface moves
in the opposite direction. These so-called advancing and receding contact angles are
thatd, < oq < 6a, Wherebeq is the contact angle at equilibrium (Fig. 17). Contact angle
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FIG. 17. Contact angle hysteresis.

hysteresis is at the origin of several common observations such as the fact that a drople
an inclined wall does not always trickle down but reaches an equilibrium state or that so
liquid can be sustained in a capillary tube despite gravity.

The origin of this hysteresis is still extensively studied and remains a subject of
bate. However, the classical explanation is a consequence of a rough and/or chemi
nonhomogeneous wall, which results imacroscopiovariation of the contact angle, its
microscopicvalue being imposed by the local affinity of the wall for the fluid. Indeed
when a droplet moves on a chemically nonhomogeneous wall (Fig.18), for hydrodynar
stability reasons, the “advancing” contact line tends to keep in contact with the mate
whose contact angle is the greater, while the “receding” contact line tends to keep in con
with the material whose contact angle is the lower. Given the general shape of the dro
in Fig. 18, if the advancing contact angle wéethe interface would be locally convex.
The Laplace relation would induce a pressure gradient in the liquid such that the advan
contact line would be pushed forward until the contact angle is BacKherefore, the
advancing contact line tends to be more in contact with the material whose contact ar
is 6, than the other and the time-averaged advancing contact angle (the one observe
closed t@,. The same reasoning can be applied to the “receding” contact line (see [5, p.
for further details).

Imposing a chemically nonhomogeneous boundary is particularly easy in the sec
gradient method: the boundary condition (44) must vary spatially, as shown in Fig.
where the contact angle is a piecewise constant function of space. However, for numel
convenience, this function is chosen to be more regular,

0(X) = Beq+ A6 COS (271 g) , (45)

x

FIG. 18. Sketch of a droplet moving from the right to the left on a wall made of two materials, whos
equilibrium contact angles afg ande; , respectively.
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(a) 0 ms (b) 12 ms (c) 24 ms (d) 36 ms

FIG. 19. Time sequence of the evolution of a drop on an inclined walt)4Bast picture corresponds to
the equilibrium state. Fluid: wateT; = 6188 K; p, = 103 kg nT%; o, = 592 kg nT3; 0 = 4.66 x 103 N m™;
equation of state: modified such that= 0.1 mm; 1 = 2.83 x 102 Pa nf kg~3; 6 x 2 mm rectangle; 30&
100 grid; initial diameter: 2 mm; gravity:.81 m s2.

where6eq is the equilibrium contact anglel is a distance of the order of the interface
thickness (at least equal tdh, andA# is the amplitude of the contact angle variation.
The boundary condition (44) is therefore replaced by

o

P = o cosp (x)]. (46)

Imposing such a boundary condition, we can numerically solve for the time evolution
a droplet on a inclined wall, and these results are presented in Fig. 19. The wall propel
of this computation are such that, = 90°, d = 4h, andAd = 45°. Itis observed that the
contact lines move erratically, which corresponds to the physical explanation of the con
angle hysteresis presented above. This erratic movement is at the origin of the capil
wave observed on the interface in the Fig. 19b that was created by the fast movemel
the advancing contact line that then stopped moving for a while. The last frame is
equilibrium state obtained, which corresponds to what is commonly observed.

6. CONCLUSIONS AND PERSPECTIVES

In this paper, we have shown how the second gradient theory could be used for the nul
ical simulation of liquid—vapor flows with phase change. We have in particular establist
the equations of evolution of a fluid endowed with internal capillarity by using the princip
of virtual work, which we consider to be the most coherent way to derive these equatic
Once the equations have been formally established, the numerical application of this th
has been addressed. In particular it is shown that the thermodynamic behavior of the 1
must be modified and the interfaces must be artificially enlarged. Then the interfaces
be resolved by a grid of reasonable size, without changing the surface tension. We s
that the functionP(p) must display strong variation near the binodal curve in order nc
to change the sound speed within the phases and to keep some thermodynamic relz
between the pressures inside and outside an inclusion at equilibrium.

It is also shown that, according to the second gradient theory, the thickness of an
terface as well as its surface tension are functions of the mass flux and the temper
gradient across the interface. These variations are shown to increase with the thickne
the interface, which means that limited heat and mass transfers across an interface c:
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simulated using this method. However, we emphasize that these limitations are reason
well understood and that some adaptations could therefore be developed in the futur
avoid these limitations.

Despite these limitations, we have shown through various examples of applications:
the method can be successfully used in one as well as two dimensions. We believe
the main advantages of the method presented are that it has a clear and strong theor
justification and that topological changes and moving contact lines are handled very ea
Moreover, going from two dimensions to three dimensions is straightforward comparec
other methods.

Nevertheless, work still has to be done to make sure that this method can be accuratel
plied in a wide range of applications. In addition, other more fundamental issues will also
addressed such as the influence of the enlargement of the interface on the contactlinem
and the dependence of the results on the numerical resolution and the interface thickn
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