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This paper presents a new method to simulate liquid–vapor flows with phase change
using a phase-field-like approach. In this method, the liquid–vapor interface is de-
scribed as a three-dimensional continuous medium across which physical properties
have strong but continuous variations. This continuous variation is made possible by
imposing that the internal energy of the fluid depends on its density gradient. This
description, called the second gradient theory, is numerically attractive since a single
system of partial differential equations (PDEs) is necessary to determine the flow in
the entire two-phase system, the phase change, the displacement of the interfaces,
and their change in topology being a part of their solution. However, to solve these
PDEs using a reasonable number of grid points on a fixed grid, the interfaces need to
be artificially enlarged. It is shown that this artificial enlargement can be thermody-
namically consistent if the thermodynamic behavior of the fluid is modified within
the binodal curve. The consequences of this thermodynamic modification are studied
in detail. In particular it is shown that, within the frame of the second gradient theory,
the interface thickness and the surface tension vary with the mass and heat fluxes
across the interface and that these variations increase with the thickness of the inter-
face. As a consequence, for a given accuracy, an upper bound exists for the interfacial
heat and mass fluxes that can be simulated. Examples of applications in one and two
dimensions show the potentialities of the method presented, in particular to deal
with moving contact lines, the description of which is a part of the second gradient
theory. c© 2001 Academic Press

1. INTRODUCTION

Complex liquid–vapor flows with phase change are often encountered in industrial ap-
plications such as heat exchangers, nuclear reactors, boilers, etc. Their better understanding
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requires experimental investigations as well as the development of analytical models. Direct
numerical simulations can be a way to help interpret experimental data and understand local
physical phenomena that can then be used to develop analytical models. For that purpose,
the use of the direct numerical simulation is already quite common in single-phase fluid
dynamics. It is not yet the case in two-phase flows with phase change, because the numer-
ical problems encountered to simulate such flows are much more complicated. The first
issue that must be faced is the tracking of a surface of discontinuity on a fixed numerical
grid. Several methods proved their efficiency to solve this problem; the most common ones
are the volume-of-fluid (e.g., [22]), front-tracking (e.g., [36]), and level-set methods (e.g.,
[34]). Nevertheless, these methods mainly deal with immiscible fluid systems. Indeed, in
such flows, the speed of displacement of an interface is equal to the velocity of the fluids
(gas and liquid) at the interface. Therefore, knowing the velocity field, it is quite easy to
interpolate it at the interface and move the interface accordingly. When phase change exists,
the problem is more complicated because three different velocities exist at an interface: the
velocities of the liquid and vapor phases and the speed of displacement of the interface. The
interpolation procedure is then no longer trivial. Juric [18, 19] showed that it was neverthe-
less possible to determine the speed of displacement of an interface in such a case by using
an iterative procedure to satisfy a Clapeyron’s relation at the interface, and he applied this
procedure to the front-tracking method. More recently, this method has been applied to the
volume-of-fluid method [38].

In all the methods using a fixed grid on which the interfaces of the system move (the
group to which the methods previously cited belong) the concept of continuous surface
tension (CSF) is used (e.g., [3]). Since the equations of motion of the two-phase system are
solved on a fixed grid and since in general the interface does not intersect the grid points,
surface tension must be transformed into a volumetric force. More generally, for numerical
reasons, the interface is spread on the fixed mesh and the equations of motion are then
solved for variables that vary continuously across three-dimensional interfacial zones thus
numerically created.

In this paper, we want to study how far one can go using this concept of a three-dimensional
continuous interfacial zone that is numerically convenient to simulate liquid–vapor flows
with phase change: instead of dealing with discontinuities, one deals with smooth varia-
tions, which is numerically simplex. This kind of approach, generally called the phase-field
method, has recently become popular, as shown in [1] for its applications in fluid mechanics.
The starting point is the following: if equations of motion have to be written for continuous
variables, these equations should be derived by using general physical principles, which
should preserve the physical coherence of the model used within interfacial zones. Since the
nineteenth century, it is known (at least for equilibrium states) that a liquid–vapor interface
can be described as a three-dimensional continuous medium using the so-called van der
Waals, Cahn–Hilliard, or second gradient theory, the last being briefly presented in Section 2.
This theory, in which it is assumed that the internal energy of the fluid depends not only on
its entropy and density but also on its density gradient, ensures a perfect thermodynamic
consistency of the equations describing the motion of a fluid within a liquid–vapor interfa-
cial zone. It must be noted that a similar theory is currently extensively applied to simulate
solidification problems and has given rise to the so-called phase-field models. These meth-
ods have already been applied to study many problems such as dendrites (e.g., [39]), binary
alloys (e.g., [2]), and anisotropic interfaces (e.g., [24]) for instance. One of the main ref-
erence papers to these methods is [27], in which it is stated that, for the temperature and
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the energy may be independent variables, the appropriate thermodynamic potential must
no longer be the free energy but rather the entropy. Therefore, it is stated that the entropy
depends not only on an “order parameterC,” but also on its gradient. In this paper, it is
shown that, for liquid–vapor systems, a complete system of balance equations, consistent
with the second principle of thermodynamics, can be found by replacing the free energy,
not by the entropy, as in the phase-field models, but rather by the internal energy. The order
parameter is then the fluid density, which has a clear physical meaning. To our knowledge no
attempt has been made to model liquid–solid systems for which the order parameter would
be the entropy, which then would have a clear physical meaning, and the thermodynamic
potential would be the internal energy.

The second gradient theory isa priori dedicated to describe physical liquid–vapor inter-
faces and is therefore generally used to study physical systems close to the critical point,
where the interface thickness is relatively large. A review of these kinds of applications can
be found in [1]. However, for more common applications, the temperature of a system is
not close to the critical temperature of the fluid and the liquid–vapor interfaces are therefore
very thin, i.e., of the order of a feẘAngströms. If this theory had to be used just as it is,
the grid spacing should be of the order of a fewÅngströms, which means that about one
hundred million points regularly spaced would be necessary to solve a one-dimensional
problem which is only one centimeter long. That would be of course of no interest. The
theory must therefore be adapted such that the thermodynamic coherence of the equations
of motion of a fluid within the interfacial zones is maintained while the interfacial thickness
is artificially enlarged, so that a standard grid can capture it. It is shown in Section 3 that
such an adaptation is possible but requires a modification of the thermodynamic behavior
of a fluid inside the interfacial zone, or more precisely inside the binodal region. It must be
noticed that this kind of approach has already been successfully used for immiscible fluids
[14], but it appears that liquid–vapor phase change makes the problem more complicated,
as will be discussed in Section 3.

Since the thermodynamic behavior of the fluid is modified for numerical purposes, it must
be ensured that important macroscopic properties are not modified too much. This study is
made in Section 4. In particular, it is shown that the values of the radius of the inclusions
(bubbles or drops) and the interfacial mass fluxes as well as the interfacial heat fluxes that
can be correctly simulated are limited. It is our current understanding that these limitations
are the inherent consequences of the thermodynamically consistent model used and would
therefore be difficult to eliminate. These limits are however clearly known. In Section 5
applications in one and two dimensions are presented using the method proposed. In these
applications, phase change always occurs, at least locally, even though some of the systems
are isothermal (in these cases, phase change is driven by local depressurization). Indeed,
in the frame of the second gradient theory, phase change cannot be eliminated (unless the
latent heat of evaporation is set to infinity, which has not been considered in this work).
Section 6 presents some conclusions and perspectives to this work.

2. INTRODUCTION TO THE SECOND GRADIENT THEORY

Classically, at a macroscopic scale, an interface between a liquid and its vapor, and
more generally between two fluids, is modeled as a surface of discontinuity endowed with
properties, the most important of which being surface tension (e.g., [9]). However, at a
microscopic scale, an interface is a volumetric transition zone across which the molecule
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density for instance varies continuously. Therefore, it would be satisfactory to describe a
liquid–vapor system, including the interfaces, by the general equations of fluid mechanics.
The simplest way to determine such equations is to consider that the internal energy of the
fluid depends not only on its entropy and density but also on its density gradient. Indeed,
van der Waals [37] first showed that to model an interface as a three-dimensional continuous
medium, the energy of a fluid particle must depend not only on its density (if it is assumed
that the fluid is at thermal equilibrium) but also on its density gradient,

F = F0(ρ)+ λ(∇ρ)
2

2
, (1)

where F is the volumetric free energy of the fluid,F0 is its classical part, andλ is the
capillary coefficient, generally assumed to be constant.

This dependence on the density gradient explains the existence of a finite thickness of an
interface as well as the existence of a surface tension.

Korteweg [21] later showed that the general constraint within a liquid–vapor interfa-
cial zone also depends on the density gradient. Cahn and Hilliard studied interfaces at
equilibrium separating fluids of different natures [4] using the same concept of an energy
dependence on a general phase-indicator function.

2.1. Thermodynamic Modeling

Rocard [30] for instance clearly showed that the form of the free energy given by (1) can
be explained at the molecular scale by using a mean field theory. Indeed, within a liquid–
vapor interfacial zone, the density of particles surrounding a test particle no longer has a
spherical symmetry and making a Taylor expansion of order one of this density of particles
in the direction normal to the interface, one shows that to the “classical” interaction energy
depending only on the density must be added an energy proportional to the square of the
density gradient as postulated in Eq. (1). Such a fluid is said to beendowed with internal
capillarity. Hence, it clearly appears that the introduction of a dependence of the energy of
a fluid on its density gradient corresponds to a higher order modeling of it (as it is done in
a Chapman–Enskog expansion in gas dynamics, for instance by Reeseet al. [29]).

The equilibrium state of a fluid endowed with internal capillarity is such that its free
energy is minimum. For a one-dimensional problem in a Cartesian system of coordinates,
one then has

δ

∫ z+

z−

[
F0(ρ)+ λ

(
dρ

dz

)2

+ L1ρ

]
dz= 0, (2)

whereL1 is a Lagrange multiplier accounting for the constraint that the system is closed,
i.e., its mass is imposed.

Therefore, the density profileρ(z) at equilibrium must satisfy the differential equation

λ
d2ρ

dz2
= µ(ρ)− L1, (3)

whereµ is the chemical potential.L1 is thus interpreted as the chemical potential at satu-
ration.
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Using this density profile at equilibrium, it can then be shown that the expression of
the energy concentrated at the interface (sometimes called the excess energy), which is the
surface tension, is given by

σ =
∫ z+

z−
λ

(
dρ

dz

)2

dz. (4)

The thermodynamic theory presented above for an isothermal system can be extended to
a nonisothermal system, for which it is assumed that the internal energy of the fluid depends
not only on its density and entropy, but also on its density gradient:

u = u(s, ρ, (∇ρ)2). (5)

Note that this model can be extended by accounting for a dependence on the entropy gra-
dient. However, no clear consequence of this other dependence could justify its introduction
to simulate the physical phenomena that are the subject of this study.

2.2. Equations of Motion of a Fluid Endowed with Internal Capillarity

So far, a thermodynamic description of a fluid endowed with internal capillarity has been
given. Equations of motion of such a fluid have then to be derived. Several approaches are
possible and are discussed in [33]. The details of their derivation can be found in [6] for
a Hamiltonian approach and in [15] for a derivation using the principle of virtual work. It
is found that the partial differential equations which govern the motion of a fluid endowed
with internal capillarity are then

∂ρ

∂t
+∇ · (ρV) = 0, (6)

ρ
dV
dt
= F −∇ p−∇ · (λ∇ρ ⊗∇ρ)+∇ · τ D, (7)

ρ
de

dt
= F · V +∇ · ((−pI − λ∇ρ ⊗∇ρ + τ D) · V)+∇ ·

(
λ∇ρ dρ

dt

)
−∇ · q, (8)

wherep is a pressure (defined by (9)),λ is the capillary coefficient (defined by (10)),τ D is
the dissipative part of the stress tensor,e is the specific total energy,q is the heat flux, and

p =̂ ρ2

(
∂u

∂ρ

)
s,(∇ρ)2

− ρ∇ · (λ∇ρ) (9)

λ =̂ 2ρ

(
∂u

∂(∇ρ)2
)

s,ρ

. (10)

This system needs to be closed by giving the expressions for the specific internal energy
u(s, ρ, (∇ρ)2) (sincep andλ depend onu), the dissipative tensorτ D, and the heat fluxq.
The expression for the specific internal energy and its consequences will be studied in the
next sections. By using the thermodynamics of irreversible processes, Seppecher [32] gave
a general expression forτ D andq, and five coefficients appear in the expression ofτ D,
for instance. Since the physical significance of all these coefficients is to our knowledge
not firmly established, we keep a Newtonian expression forτ D (an assumption which is
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generally made and which gives good interpretations of macroscopic phenomena as shown
in [33] for instance). Similarly, we keep a classical Fourier’s law for the heat flux.

Hence,

τ D = ν tr(D)+ 2µD, (11)

whereD =̂ (∇V + ∇TV)/2 and

q= −k∇T. (12)

The fact that the Cahn–Hilliard theory accounts for surface tension as a volumetric
property has already been shown in Section 2.1 where surface tension has been interpreted
as an energy per unit area. Given the momentum balance equation (7), an analysis of the
efforts applied on a elementary volume placed within an interfacial zone shows (e.g., [16])
thatat equilibriumthe pressure in the tangential direction of the interface is weaker than in
the normal direction. A tension is thus applied in the tangential direction of an interface,
the integration of which is interpreted as surface tension. The expression thus found is (4).

2.3. Some Important Comments

The system of Eqs. (6)–(8) has been established for an interfacial zone, where the density
gradient has a nonnegligible contribution to their energy. However, within the phases this
contribution can be neglected and it is straightforward to show that in that case Eqs. (6)–(8)
reduce to the classical equations of motion of a single-phase fluid.

That means thatsolving only these three continuous partial differential equations will
determine the whole liquid–vapor two-phase flow, with the movement of the interfaces,
including breakup and coalescence phenomena, being just a part of the solution. Therefore,
virtually no particular treatment of the interfaces is needed, which means that the main
difficulty encountered in numerical methods dedicated to the direct numerical simulation
of two-phase flows could be overcome.

However, if one wants to benefit from this virtual advantage, a difficulty must previously
be resolved. Indeed, a simple analysis of orders of magnitudes (e.g., [7]) shows that the
relevant length scale associated with the equation of motion of a fluid endowed with internal
capillarity is about 10−10 m. Since surface tension appears as an integral property, the
interfacial zones must be numerically resolved, and therefore several discretization points
should be used to capture an interface. Hence, to solve a one-dimensional problem which
is 1 mm long, about 10,000,000 discretization points uniformly spaced are needed, which
is absolutely impossible and of no interest.

A way to overcome this issue is presented in the next section.

3. MODIFICATION OF THE THERMODYNAMIC BEHAVIOR OF A FLUID

The question to which we will give an answer in this section is:is it possible to artificially
enlarge a liquid–vapor interfacial zone without losing the thermodynamic coherence of the
second gradient model?

3.1. The Vicinity of the Critical Point

The vicinity of the critical point is particularly appropriate to the application of the
second gradient theory. Indeed, let us consider a liquid–vapor system at equilibrium at a
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temperature slightly different and lower than the critical temperatureTc of a fluid. Under
these conditions, the thickness of a liquid–vapor interface is typically of the order of one
micrometer. That means that close to the critical point, the use of a three-dimensional model
to describe a liquid–vapor interface is fully justified, which is the reason this model is mainly
used to study critical phenomena (e.g., [11]).

Furthermore, in the vicinity of the critical point, simplifications of the equation of state
of a fluid can be made [31]. For instance, it can be shown that the dependence on the energy
W defined as

W(ρ) =̂ F(ρ)− (F(ρsat
v

)+ µsat
(
ρ − ρsat

v

))
, (13)

whereµsat is the chemical potential at saturation,ρsat
v andρsat

l are the densities of the vapor
and liquid phases at saturation respectively, andA is a “constant” (all these properties are
functions of the temperature), takes the following particularly simple form:

W(ρ) = A
(
ρ − ρsat

v

)2(
ρ − ρsat

l

)2
. (14)

Consider a plane interface at equilibrium in the vicinity of the critical point. Assuming
that the capillary coefficient is constant, the momentum balance equation can be integrated
analytically and it is found that the density profile across a plane interface at equilibrium is

ρ(z) = ρsat
l + ρsat

v

2
+ ρ

sat
l − ρsat

v

2
tanh

(
z
ρsat

l − ρsat
v√

2λ/A

)
. (15)

Under these conditions, the interface thickness and of the surface tension are given by

h = 4

ρsat
l − ρsat

v

√
λ

2A
, (16)

σ =
(
ρsat

l − ρsat
v

)3

6

√
2Aλ. (17)

Equations (16) and (17) show that the second gradient theory predicts that in the vicinity
of the critical point, the thickness of an interface at equilibrium is proportional to

√
λ/A

and its surface tension is proportional to
√
λA. This remark will be important to better

understand the way an interface can be artificially enlarged.
This is done in the following section.

3.2. Artificial Enlargement of an Interface: Main Idea

We recall that our main purpose is to artificially enlarge an interface so that a standard mesh
can capture it. The thickness of an interface is then a parameter, whose value musta priori
be given following numerical arguments (size of the system studied, computer power, etc.).

The study of an interface at equilibrium in the vicinity of the critical point, presented in
Section 3.1, indicates that the thickness of such an interface is proportional to

√
λ. Hence, an

artificial enlargement can be achieved by increasingλ. However, its surface tension is also
proportional to

√
λ and therefore, increasing the capillary coefficient will increase the value

of the surface tension of the fluid. This is not acceptable since our main goal is to perform
direct numerical simulations for which surface tension is an important physical property.
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This issue can be overcome by decreasing the value of the coefficientA at the same
rate asλ is increased (see Eqs. (16) and (17)). Hence,the thickness of an interface can be
increased, without changing the value of surface tension.

These considerations show that it should be possible to artificially enlarge an interface
without modifying the thermodynamic coherence of the second gradient model provided that
the thermodynamic behavior of the fluid is modified inside the interfacial zone, or more pre-
cisely, if the dependence on the density of the thermodynamic functions are modified for den-
sity values between the values of the densities at saturation, that is, inside the binodal region.

Another issue is then encountered. Indeed, modifying the value ofA modifies the ther-
modynamic behavior of the fluid for all the values of the density as shown by relation (14).
In particular, the derivative(d P/dρ) will be modified at the phase densities at saturation,
which means that the speed of sound of the liquid and vapor phases will be modified. This
is not acceptable if the goal is to perform direct numerical simulations.

The crux is then to modify the equation of state of the fluid so that the interface can be
artificially enlarged, but maintaining a certain regularity near the binodal curve, i.e., for
values ofρ closed toρsat

v andρsat
l .

A full solution to this problem is presented in the next section.
It must be emphasized that this latter issue makes the problem of using a diffuse interface

method to simulate phase-change phenomena more difficult than to simulate immiscible
two-phase flows. Indeed, Jacqmin [13, 14] developed the same idea as the one presented
above but for immiscible fluids for which the Cahn–Hilliard theory is used.1 The issue of
maintaining the equation of state of the bulk phases does not exist in that case, since the
phases are supposed to be incompressible.

3.3. Artificial Enlargement of an Interface: Mathematical Implementation

The best way to find the thermodynamic behavior of a fluid that would satisfy all the
conditions that must be recovered is to work directly on the “classical” free energy of the fluid
and on its capillary coefficient supposed to be constant (or a function of the temperature
only). The reason is that once the thermodynamic behavior is given, we have shown in
Section 3.1 that all the interfacial properties are just consequences.

Let us first list the conditions that must be satisfied:

• The value of the thickness of an interface at equilibriumhsat can be chosen arbitrarily
(from numerical arguments).
• The value of the surface tension at equilibriumσ sat can be chosen arbitrarily (from

experiment).
• The bulk phase thermodynamic properties can be chosen arbitrarily (from experiment

or models).
• The pressure as a function of density must be once continuously differentiable (con-

tinuous speed of sound).

It is proposed to search for the modified thermodynamic functionWmod(ρ) using

Wmod(ρ) = σ sat

hsat
(φ(r ))2, (18)

1 Note that in the case of immiscible fluids a color functionC (which has a value of one in a phase and zero in
the other) is used as the phase parameter, the density being the phase parameter in our case.
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FIG. 1. Shape of the functionψ(r ) for water at 1 K below the critical point and an artificial thickness of an
interface at equilibrium equal to 1 mm.

whereφ is a nondimensional function of the nondimensional variabler =̂ (ρ − ρsat
v )/

(ρsat
l − ρsat

v ).
Let us define the functionψ(r ) as

ψ(r ) =̂ φ(r )

max(φ)
. (19)

Jamet [15] showed that the shape of the functionψ(r )mustbe the one shown on Fig. 1.
This shape is easily understood. It has been shown in Section 3.2 that one of the main

requirements that must be satisfied to enlarge an interface is to decrease the value ofA in
the vicinity of the critical point, or more generally to decrease the maximum of the function
W(ρ). If that were the only requirement, then the functionψ(r )would still have a parabolic
shape. However, it is moreover required that the function(d P/dρ)(ρ) keep its value and
be continuous atρ = ρsat

v andρ = ρsat
l . It is straightforward to show that this derivative

is linked to the derivative of
√

W(ρ). Therefore, the derivative of
√

W(ρ) must be kept
constant and its maximum must be decreased. If this decrease is huge, typically of the order
of 10,000 in the conditions of the Fig. 1, then the initially parabolic shape of

√
W(ρ) will

be drastically shrunk only in its medium part, and its tangents atρ = ρsat
v andρ = ρsat

l will
be kept constant, so that its dimensionless formψ(r ) mustbe the one shown on Fig. 1.

Given the functionψ(r ), all the thermodynamic properties of the fluid, such as the
pressure for instance, can be deduced by derivation. For instance, it can be shown that

Pmod(ρ)− Psat= 2σ sat

hsat
φ

(
ρ

ρsat
l − ρsat

v

dφ

dr
− 1

2
φ

)
. (20)

Figure 2 shows the modified equation of state for water at 1 K below the critical point for
an artificial thickness of an interface at equilibrium arbitrarily equal to 1 mm. For the sake
of simplicity, it has been assumed that the van der Waals’ equation of state is valid in the
bulk phases and is plotted inside the binodal region as a reference equation of state. It can be
seen that the modification of the equation of state is really drastic within the binodal region.
The reason is that in the case considered here, the artificial enlargement of the interface
thickness is of the order of 10,000, which corresponds to a decrease of the maximum of
(d P/dρ) (achieved in the middle of the binodal region) of about 10,000 (see Eqs. (16) and
(17) for whichA is roughly proportional to max(d P/dρ)).
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FIG. 2. Modified van der Waals’ equation of stateP(v) for water at 1 K below the critical point such that the
artificial thickness of an interface is equal to 1 mm. (a) van der Waals’ and modified equations of state for which
the pressure scale is adapted to the van der Waals’ equation of state. (b) van der Waals’ and modified equations of
state for which the pressure scale is adapted to the modified equation of state.

The procedure described above to find the modified thermodynamic behavior of a fluid
is valid if the system is isothermal: the functionψ(r ) and then the modified volumetric free
energyFmod(ρ) can be found for any given temperature. However, Jamet [15] showed that
working directly with the free energy to seek a modified thermodynamics keeps the whole
thermodynamic coherence of the model and that Maxwell’s thermodynamic relations are
recovered.

It must be emphasized that the modified thermodynamics presented above does not change
the values of the densities at saturation, which means that the binodal curve is not modified.
Therefore,any thermodynamic function is unchanged at saturation, and particularly the
specific enthalpyi . The latent heat of vaporizationL defined as

L =̂ i sat
v − i sat

l (21)

is therefore not modified by the modified thermodynamics proposed here.

4. SOME CONSEQUENCES OF THE MODIFICATION OF THE THERMODYNAMIC

BEHAVIOR OF A FLUID

The purpose of this section is to study the physical consequences introduced by the drastic
modification of the equation of state necessary to artificially enlarge an interface as shown
in Section 3.

4.1. Radius of Inclusions That Can Be Simulated

According to Laplace’s theory of capillarity, the pressures of the phases surrounding an
inclusion of radiusR at equilibrium are given by (e.g., [5])

Pv − Psat= η ρsat
v

ρsat
l − ρsat

v

2σ

R
(22)

and

Pl − Psat= η ρsat
l

ρsat
l − ρsat

v

2σ

R
, (23)
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FIG. 3. Characteristic points of the liquid and vapor phases of a bubble and a drop in a Clapeyron diagram.

where

η =̂
{+1 for a droplet

−1 for a bubble.
(24)

As shown in Fig. 3, these pressures are such that one of the phases is metastable, i.e.,
located in the binodal region, where the equation of state is modified. Therefore the relations
(22) and (23) may not be verified and the Laplace relation is likely to be violated for a
modified equation of state.

The equilibrium state of a spherical inclusion described by the second gradient theory is
such that (e.g., [10])

Pl − Pv = 2
∫ ∞

0
λ
(dρ/dr)2

r
dr. (25)

This relation is general and, if the radius of the inclusion is greater than the interface
thickness ([15]), is the Laplace relation.The Laplace relation is therefore not violated by
the modified equation of state introduced in Section 3.

Moreover, since the modified thermodynamics considered in Section 3 is such that the
function(d P/dρ)(ρ) is continuous, especially on the binodal curve, an analysis based on
Taylor expansions of order one in(2σ/R) shows thatEqs. (22) and (23) are satisfied for
any modified thermodynamics. The influence of the modification of the equation of state
appears only if the Taylor expansions are made up to an order three,

Pmod
l ,v − Pl ,v = ξ sat

(
2σ

R

)3

, (26)

where 
ξ sat=̂ η ρsat

l ρsat
v

6ρsat
p

(
ρsat

l − ρsat
v

)4

d2µmod

dρ2

(
ρsat

p

)− d2µ

dρ2

(
ρsat

p

)
(

d2µ

dρ2

(
ρsat

p

))3

ρsat
p =̂

(
ρsat

l − ρsat
v

)− η(ρsat
l + ρsat

v

)
2

(27)

and Pl ,v is the pressure in either the liquid or the vapor phase for nonmodified thermody-
namics, andPmod

l ,v is this pressure for a modified equation of state.
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FIG. 4. Typical values of 2σ for water at 30 K below the critical point for different values of the artificial
thickness of an interface at equilibrium.

Let us suppose that, for any reason, it is acceptable to make an errorε < εlim on the
absolute pressure level, whereε is defined as

ε=̂
∣∣∣∣ Pmod

l ,v − Pl ,v

2σ/R

∣∣∣∣. (28)

Equations (26) and (28) show that inclusions whose radii are greater than a limitRlim

given below will introduce an errorε less thanεlim.

Rlim = 2σ
√
|ξ sat| 1√

εlim
. (29)

Typical values of 2σ
√|ξ sat| for water are plotted in Fig. 4 for different values of the

temperature and of the artificial interface thickness at equilibrium. This figure shows that if,
for example,εlim is equal to 10−4 and if the artificial interface thickness is equal to 0.1 mm
at 1 K below the critical point, then the radius of the inclusions that will satisfy the criterion
(i.e.,ε < 10−4) must be greater than about 1 mm. For radii smaller than 1 mm, the pressure
level surrounding the interface will not satisfy the criterion onε, even though Laplace’s
relation will always be satisfied.

4.2. Interfacial Mass Fluxes That Can Be Simulated

The issue that will be handled in this section isto know whether the thermodynamics
modification introduced in Section 3 modifies the speed of displacement of an interfacial
zone during a phase-change process.

For this purpose,a stationary, one-dimensional, isothermal problemis studied. Such a
problem corresponds to the physical situation sketched in Fig. 5. Note thatphase change
exists even though the system is isothermal. Physically speaking, phase change in this
case is due to depressurization: as the piston is withdrawn, the vapor pressure decreases
and the liquid and vapor phases are no longer in thermodynamic equilibrium. To recover
thermodynamic equilibrium, some liquid must vaporize. This vaporization consumes energy
that is transported toward the interfacevia conductive heat fluxes. These heat fluxes need
nonzero temperature gradients. In this section, it is assumed that the thermal conductivity is
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FIG. 5. Sketch of a one-dimensional isothermal phase-change problem.

large, the phase change is slow, and the phases can be considered isothermal. The detailed
conditions under which this asumption is valid can be found in [15].

If the piston and wall velocities are constant then the speed of displacement of the interface
is constant and given by mass conservation ( e.g., [9]):

Vi = ρl Vl − ρvVv
ρl − ρv (30)

The bulk densitiesρl andρv are thus such that (e.g., [12])

P(ρv) = Psat− ṁ2
c

2

(
1
ρsat
v
− 1

ρsat
l

)
P(ρl ) = Psat+ ṁ2

c
2

(
1
ρsat
v
− 1

ρsat
l

)
,

(31)

where

ṁc =̂ ρl (Vl − Vi ) = ρv(Vv − Vi ). (32)

Equations (31) show that the liquid and the vapor are respectively subcooled and super-
heated; the phase characteristic points are therefore located outside the binodal curve.

This one-dimensional, isothermal, stationary problem (in the frame of reference of the
interface) can be studied using the second gradient model and it is found that the pressures
of the phases are given by{

P(vl )− [ P(vv)− ṁ2(vl − vv)] = 0∫ vv
vl
{P(v)− [ P(vv)− ṁ2(v − vv)]} dv = 0,

(33)

wherev =̂ 1/ρ is the specific volume anḋm =̂ ρV = const.
Equations (33) is a generalization of the Maxwell’s rule [23] in the presence of an

interfacial mass transfer (e.g., [7]). It must be emphasized that these relations are satisfied
whatever the equation of stateP(v).

A Taylor expansion of order one iṅm2 of Eq. (33) can be made [15] which leads exactly
to the relations (31) (in whicḣmc is replaced byṁ). Since these relations imply that the
phases are not metastable,any artificial enlargement of an interface does not modify the bulk
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FIG. 6. Evolution of density profiles with the interfacial mass flux (in kg m2 s−1) for water at 1 K below
the critical point. (a) Van der Waals’ thermodynamics. Note the symmetric effect of the recoil pressure on phase
densities. (b) Modified thermodynamics such that the artificial thickness of an interface at equilibrium is equal to
1 mm.

phase densities. Back in an absolute frame of reference, since the piston and wall velocities
Vv andVl are parameters of the problem,the speed of displacement of the interface given
by (30) is not modified by its artificial enlargement.

Casal and Gouin [7] showed that the second gradient theory predicts a variation of
surface tension with the interfacial mass flux, and the issue is then to know how an artificial
enlargement modifies such a variation.

Figure 6 shows interface density profiles at 1 K below the critical point crossed by
different mass fluxes for a van der Waals’ equation of state and for a modified equation
of state. This figure shows that in the case of a modified equation of state, the interface
thickness is more sensitive to an interfacial mass flux than in the case of a van der Waals’
equation of state. This increased sensitivity has two drawbacks: first, if the mass flux is too
high, the interface thickness will no longer be captured and second, an induced variation of
the surface tension could corrupt the physical relevance of a simulation.

Taylor expansions to first order iṅm2 of the density profile show that the interface
thickness and the surface tension are given by the approximations [15]

h− hsat

hsat
' −ṁ2hsat

(
ρsat

l − ρsat
v

)2

4σ satρsat
l ρsat

v

(
ρsat

l + ρsat
v

) (34)

and

σ − σ sat

σ sat
' ṁ2hsat

(
ρsat

l − ρsat
v

)2

4σ satρsat
l ρsat

v

(
ρsat

l + ρsat
v

) . (35)

The linear variation with the interface thickness explains the difference between the
profiles of Figs. 6a and 6b.

Equations (34) and (35) must help to decide whether the method proposed can be used to
perform a relevant numerical simulation. Let us suppose for instance that, for any reason,
it is acceptable to make a relative error in the value of the surface tension of 1%. At 1 K
below the critical point, this means that the interfacial mass flux must be lower than 7 kg
m2 s−1, which corresponds to a piston velocity equal to about 5.4 mm s−1 for the problem
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sketched in Fig. 5. If this value is considered to be too small for the physical parameters
used in the desired numerical simulation, the only solution is to change the mesh size so
that the artificial interface thickness can be decreased.

4.3. Interfacial Heat Fluxes That Can Be Simulated

When a liquid–vapor interface is modeled as a discontinuous surface, it is generally
assumed that the temperature at the interface is equal to the saturation temperature. In the
second gradient theory, the temperature in the interfacial zone is given by the solution of
(6)–(8) and the issue is thereforeto know whether the temperature within an interfacial
zone is at least close to the saturation temperature.

Let us considera one-dimensional liquid–vapor system under mechanical equilibrium in
which the vapor phase is superheated by a temperature1T and the liquid phase is subcooled
by the same temperature1T (see Fig. 7). The density profile should thus be such that the
interfacial zone is automatically located where the saturation temperature is reached.

This problem requires solving the momentum and energy balance equations (see Eqs. (7)
and (8))

d P

dz
= λρ d3ρ

dz3
(36)

d

dz

(
k

dT

dz

)
= 0, (37)

where the capillary coefficientλ is assumed to be constant andk is the thermal conductivity
a priori function ofρ.

The coupling between Eqs. (36) and (37) is mainly encountered through the dependence
of the pressure on the temperature, that is, through the equation of state of the fluid which
is likely to be modified as described in Section 3.

Typical density and temperature profiles for a van der Waals’ equation of state as well as
for a modified equation of state are shown in Fig. 8. In both cases, it can be seen thatthe
saturation temperature is reached within the interfacial zone.

However,when the heat flux is increased through an increase of the temperature difference
1T , Fig. 9 shows that the interface thickness varies, which implies also a variation of the
surface tension.

FIG. 7. Sketch of a one-dimensional heat transfer across a liquid–vapor interfacial zone at mechanical equi-
librium.
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FIG. 8. Density and temperature profiles across a liquid–vapor interface at mechanical equilibrium crossed
by a constant heat flux. (a) Van der Waals’ equation of state. (b) Modified equation of state for which the thickness
of an interface at equilibrium is equal to 10−4 m.

A first attempt to explain this variation can be found in [15], where it is assumed that
the temperature gradient is constant (i.e.,k = const). This attempt is based on a Taylor
expansion of order one in1T and leads to the approximations

h− hsat

hsat
' −∇T(hsat)2

ρsat
l + ρsat

v

2

ρsat
v L

2Tsat
(
ρsat

l − ρsat
v

)
σ sat

ξ(Tsat) (38)

σ − σ sat

σ sat
' ∇T(hsat)2

ρsat
l + ρsat

v

2

ρsat
v L

2Tsat
(
ρsat

l − ρsat
v

)
σ sat

ξ(Tsat), (39)

where

ξ(T) =̂ 2ρsat
l

ρsat
l − ρsat

v

ln

(
2ρsat

l

ρsat
l + ρsat

v

)
− 1. (40)

FIG. 9. Density profiles across an artificial enlarged liquid–vapor interface (hsat= 10−5 m) at mechanical
equilibrium crossed by increasing heat fluxes.
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Equations (38) and (39) show thatthe relative variation of the interface thickness and
the surface tension is linear in the temperature gradient within the interfacial zone and
quadratic in the interface thickness at equilibrium. These variations are therefore more
sensitive to the interface thickness at equilibrium than they are in the presence of a mass
flux. Jamet [15] showed that Eqs. (38) and (39) give the right dependencies on∇T andhsat

but that the proportionality factor is underestimated by a factor 2 to 3 for water.
As an illustrative example, let us suppose that, for any reason, it is acceptable to make a

relative error of 1% on the value of the surface tension. At 1 K below the critical point, for
the problem sketched in Fig. 7, the temperature gradient in the vicinity of the interface must
be lower than 0.65 K m−1, which would correspond to a maximum value of the conductive
heat flux across the superheated vapor and the subcooled liquid equal of about 0.2 W m−2

and an artificial interface thickness of 10−5 m. If this value is considered to be too small
for the physical parameters used in the numerical simulation intended, the only solution is
to increase the mesh resolution to support a decreased artificial interface thickness.

This feature can sometimes be a limitation. For instance, in the simulation considered in
[38, p. 673], the present method could be used with an interface thickness at most equal
to 0.25 mm if the relative error on the surface tension had to be less than 1%. The second
gradient method would have required a mesh spacing about 10 times smaller than the one
used in [38] with the most refined resolution, which would be prohibitive with no local
mesh refinement.

5. APPLICATIONS

In this section, illustrative examples of preliminary results using the method presented in
the previous sections are presented. Although they do not cover all the potential uses of the
method, they are considered to be test cases before a complete simulation of a liquid–vapor
flow with phase change can be performed. A one-dimensional liquid–vapor phase-change
problem is illustrated in Section 5.1; two-dimensional problems are presented in Section 5.2.

5.1. One-Dimensional Phase-Change Problem

The solution to the problem considered (see Fig. 10) requires the resolution of the three
balance equations (6), (7), and (8). To stress the importance of the change in thermodynamics
introduced in Section 3, the results obtained for the classical van der Waals’ equation of state
will be compared to those obtained for a modified equation of state. It must be emphasized
that the size of the physical domain is very different depending on whether the equation
of state is modified or not, since the size of the domain is proportional to the interface
thickness for a roughly constant computational time. In addition, even in the vicinity of the
critical point, the physical interface thickness is very small and the size of the domain must
therefore be very small. In contrast, the use of the modified thermodynamics presented in

FIG. 10. Sketch of a one-dimensional vaporization problem.
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Section 3 allows the interface thickness to be chosen as an independent parameter (provided
that limitations exhibited in Section 4 are acceptable) and the size of the domain cana priori
be chosen arbitrarily.

The fluid is water and the saturation temperature is equal to 646.3 K, i.e.,Tsat= Tc − 1 K.
The results with a modified equation of state presented in the following are such that
hsat= 0.1 mm andx0 = 2 mm. The artificial enlargement is thus close to 625.

The set of initial conditions for the computations presented in this section are the
following:

• There is a zero velocity field on the whole domain.
• There is a linear temperature field fromTw = Tsat+1T at x = −x0 to Tsat at x = 0,

with constant temperatureTsat from x = 0 to x = +x0 and1T = +0.6 K.
• The density fields in the vapor phase (fromx = −x0 to x = 0) and the liquid phase

(from x = 0 to x = +x0) are first computed by modeling the interface as a discontinuity
and the profile is then smoothed in the vicinity of the interface (approximately fromx =
−hsat/2 tox = +hsat/2) to recover the equilibrium thickness dictated by the second gradient
formulation; this initial density profile does not correspond perfectly to the equilibrium state
but nevertheless leads to a decent initial transient.

Equations (6)–(8) are solved using a classical MAC scheme in space and a first-order
explicit Euler scheme in time. Special attention is paid to the boundary conditions for which
we adapted the NSCBC approach of Thompson [35] and Poinsotet al. [28] to impose the
boundary conditions prescribed in Fig. 10.

The results will be presented in a nondimensional form, introducing the following simple
scaling.

• For the sake of convenience, a characteristic conduction time derived from the vapor
Fourier number is used for the time scale;

τc =̂ ρ
sat
v (2x0)

2Cpv
kv

, (41)

whereρsat
v , Cpv, andkv are evaluated atTsat= 646.3 K.

• The length scale is chosen to bex0.
• The velocity scale is thereforex0/τc . This choice allows the results to be of order one.

The reduced quantitiesx∗, t∗, andV∗ that will be used in the following are respectively
defined asx∗ =̂ x/x0, t∗ =̂ t/τc, andV∗ =̂ V/x0.

Figure 11 shows the density, velocity, and temperature profiles at the reduced timest∗

equal to 0, 0.1, 0.2, 0.3, . . . . It is seen that the liquid is pushed out of the computational
domain by the vapor produced at the interface. Figure 11b shows that, after a short transient,
the velocity in the bulk phases is fairly uniform (slightly modified by the thermal expansion
in the vapor phase), whereas the velocity jump corresponding to the vaporization process
is smoothed across the interface thickness.

Figure 12 gives a comparison between the reduced interface positionx∗i =̂ xi /x0 as a
function of the reduced time, calculated from the results of Fig. 11a and the one obtained
by an analytical model of a discontinuous interface.

In the analytical model, it is assumed that the interface is discontinuous and that the
Péclet number is negligible. This last assumption is not completely valid in our example:
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FIG. 11. One-dimensional problem: Reduced time sequence (t∗ = 0, 0.1, 0.2, 0.3, . . .) of the density,
velocity, and temperature fields versus the reduced space coordinatex∗.

if the physical properties are estimated using(ρwv + ρsat
v )/2 and(Tw + Tsat)/2, the Péclet

number

Pe=̂ Cp1T

L ' 0.47 (42)

is indeed not negligible, and that gives a good explanation to the slight discrepancies between
the analytical results forPe= 0 and the numerical results given in Fig. 12. Indeed, the

FIG. 12. One-dimensional problem: Comparison of the numerical results with an analytical model showing
evolution of the reduced position of the interfacex∗i versus the reduced timet∗.
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first-order correction accounting for a nonzero P´eclet number is given by an apparent latent
heat of vaporizationLPe defined as

LPe=̂L
(

1+ 1

2
Pe

)
, (43)

where the P´eclet number is estimated to be constant throughout the entire vapor phase
(Pe= 0.47).

This correction accounts for the heat-capacity effect in the vapor phase, which is decreased
when the temperature gradient decreases due to the motion of the interface. Figure 12 shows
that the correction term has the proper order of magnitude, even though the correction is
not perfect, probably because of the variation ofCp with temperature.

Owing to the nonlinear effects induced by the variation of the P´eclet number in space and
time, the numerical results reported in Fig. 12 can be considered satisfactory compared to
an approximate analytical solution. Note that these good results are obtained even though
the interface was artificially enlarged.

5.2. Examples of Two-Dimensional Isothermal Flows

In this section, results of two-dimensional simulations will be presented. A first study will
be dedicated to the numerical convergence of the Laplace relation. The other applications
are unsteady. However, for the sake of simplicity, isothermal systems are considered. It
must be emphasized that,even though the systems are isothermal, phase change exists, as
explained in Section 4.2. However, since the systems considered are closed, phase change
can only be local and is therefore limited.

5.2.1. Numerical convergence of the Laplace relation.The Laplace relation is the main
macroscopic consequence of the existence of surface tension. With the proposed method,
surface tension is transformed into a continuous force within an interfacial zone that is
discretized with a finite number of grid points, and the convergence of the Laplace relation
must therefore be addressed. Moreover, it is believed that this convergence analysis is the
most important one in order to understand convergence issues on more macroscopic and
coupled problems.

To perform this convergence analysis, the following parameters were chosen:

• The fluid is water,
• The system is isothermal at a temperature equal to 646.3 K (1 K below the critical

temperature),
• The system is two dimensional: a 2.7 mm by 2.7 mm square,
• The fluid mass is such that if the interface were a discontinuity, the radius of the vapor

bubble would be equal to 1 mm,
• The surface tension, the vapor, and the liquid densities are approximately equal to

7× 10−5 N/m, 182 kg/m3, and 213 kg/m3 respectively,
• The vapor and liquid phases are modeled by the van der Waals’ equation of state,
• The artificial thickness of the interface is equal to 0.1 mm.

Once a steady state is reached, the pressure difference between the center of the bubble and
the square corners is measured. Note that the steady state is not an equilibrium state since,
with the numerical method used to discretize the equations of motion, parasitic currents are
observed, which are similar in shape to those reported in [3] for instance.
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FIG. 13. Convergence of the Laplace relation.n, h, Dx, andPcare, respectively, the number of grid points on
one edge (n2 is the total number of grid points), the interface thickness, the mesh size, and the capillary pressure
(Pcappis the “measured” capillary pressure, whereasPc is the theoretical capillary pressure.)

Since the interface thickness is a parameter that can be chosen, we performed two con-
vergence studies. First, the interface thickness is fixed and the number of grid points is
increased, thus increasing the number of grid points within the interface. Second, the num-
ber of grid points is increased but the number of grid points within the interface is kept
constant, thus decreasing the artificial thickness of the interface. The results obtained are
given in Fig. 13.

Figure 13a shows that the convergence of the Laplace relation with an increasing number
of grid points within the interfacial zone is quadratic. In contrast, Fig. 13b shows that, when
the number of grid points is increased without increasing the number of grid points within
the interfacial zone, the Laplace relation does not converges and that the relative error is
nearly a constant (with a slight increase). Therefore, it can be concluded that the error on the
Laplace relation is due only to the truncation error introduced within the interfacial zone.

Note that other numerical results, not reported here, showed that the pressure difference
is proportional to the inverse of the bubble radius and that the error on the Laplace relation
does not depend on the bubble radius.

5.2.2. Coalescence of two bubbles in the absence of gravity.In this section, we present
the ability of the method proposed to deal with topology changes. Figure 14 shows the time
evolution of two two-dimensional bubbles initially separated but nevertheless very close to
each other. It can be seen that very rapidly the two bubbles coalescence and that the single
bubble thus created finally reaches an equilibrium state. The density fluctuations observed
in the phases in the early stages of the coalescence are due to the pressure waves generated
during the process.

Even though the initial coalescence behavior certainly depends on the interface thickness
and on the numerical discretization, it must be emphasized that the change in the topology
is made at absolutely no cost. This property will be kept at no cost in three dimensions. The
influence of the numerical parameters on coalescence and breakup will be investigated in
the future.

It must be noticed that to be able to obtain this coalescence in a quiescent liquid, the
bubbles have to be very close to each other (i.e., of the order of the interface thickness).
Indeed, if the bubbles are too far apart, it is observed that the smaller one shrinks and
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FIG. 14. Time sequence of the coalescence of two bubbles initially at rest in microgravity (low density
in light and high density in dark). Fluid: water;T = 646.3 K; equation of state: van der Waals;λ = 1.773×
10−14 Pa m8 kg−3; 4.2× 2.8µm rectangle; 316× 210 grid; radii of the initial bubbles: 0.7 and 0.35µm..

disappears while the bigger one grows accordingly. Thus no coalescence is observed. This
behavior can be explained thermodynamically. It is well known that the equilibrium of a
bubble in an isothermal and isobaric system is unstable (e.g., [5]); i.e., if the radius is slightly
greater than the equilibrium radius, the bubble grows endlessly and if it is slightly smaller
than the equilibrium radius, the bubble shrinks and disappears. It then appears that in the
closed system considered here, the bigger bubble imposes its pressure in the liquid: the
pressure outside the smaller bubble is bigger than the equilibrium pressure for the smaller
bubble, which then shrinks.

It must be emphasized that the physical features of the coalescence simulated here are
limited to the model considered and that no attempt has been made to account for physical
effects that affect the coalescence such as electrical interactions [8, 20, 26].

Spinodal decomposition is also a good example of large topology changes. Numerical
simulations of spinodal decomposition using the van der Waals’ theory are reported in the
literature [17, 25].
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FIG. 15. Time sequence of the impact of a rising bubble initially at rest on a wall. Fluid: water;T = 646.3 K;
equation of state: van der Waals;λ = 1.773× 10−14 Pa m8 kg−3; 2.5× 2.5 µm square; 100× 100 grid; contact
angle: 90◦.

5.2.3. Static contact angle.In this section, we show the ability of the method proposed
to account for contact angles. The contact angle statics and dynamics described by the
second gradient theory have already been studied theoretically by Seppecher [33]. The goal
here is just to show through some numerical examples that some important physical features
are recovered numerically by the second gradient method.

Figure 15 shows the time evolution of a bubble rising toward a wall under the action of
gravity. For the sake of simplicity, a van der Waals’ equation of state has been used.

It can be seen that the initial contact, as well as the evolution of the bubble once attached
on the wall, can be captured. This is an important feature of our method since, to our
knowledge, only one method is able to simulate a contact angle and a moving contact line
in a rather general and numerically convenient way, this method being based on a similar
theory [14]. It is observed that immediately after the contact of the bubble with the wall,
the contact line moves very rapidly (with respect to the velocity of the bubble before the
contact), which is what is commonly observed. Afterwards the surface tension plays its role
by preventing the contact line from moving too far and an equilibrium state is reached in
which the bubble has a hemicylindrical shape.

In the present simulation, a constant value of the contact angle is imposed by the simple
boundary condition

n · ∇ρ = 0, (44)

wheren is the unit normal to the boundary (i.e., the upper wall).
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FIG. 16. Equilibrium shape of bubbles after their impact on a wall. Fluid: water;T = 646.3 K; equation of
state: van der Waals;λ = 1.773× 10−14 Pa m8 kg−3; 5× 1.5µm rectangle; 200× 60 grid; contact angle: from 0
to 180◦.

This condition imposes that the contact angle is equal to 90◦, which is what is actually
observed in Fig. 15, particularly in the last frame corresponding to the equilibrium state.

No contact angle variation with the speed of displacement of the contact line was in-
troduced in this simulation. Seppecher [33] showed that this dependence can be correctly
captured by the second gradient theory. However, this dependence may be affected the
artificial thickening of the interface introduced for numerical purposes. This issue will be
addressed in the future.

Figure 16 shows different equilibrium shapes of a bubble attached on a wall corresponding
to different contact angles. These equilibrium states were obtained by performing the same
simulation as the one presented in Fig. 15, in which the boundary condition (44) has been
adapted to account for the desired contact angle.

It can be seen that any boundary behavior can be simulated, from a completely wetting
material, where the bubble remains almost cylindrical (the wall has no affinity for the vapor),
to a completely nonwetting one, where the bubble tends to spread completely (the wall has
no affinity for the liquid). All the intermediate behaviors can be simulated as well, as shown
in Fig. 16.

5.2.4. Contact angle hysteresis.Contact angle hysteresis is an important feature of a
moving contact line. Experimentally, it is observed that when a gas–liquid interface in
contact with a solid wall moves in the direction oriented from the liquid to the gas, the
contact angleθa is greater than the contact angleθr observed when the interface moves
in the opposite direction. These so-called advancing and receding contact angles are such
that θr < θeq < θa, whereθeq is the contact angle at equilibrium (Fig. 17). Contact angle
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FIG. 17. Contact angle hysteresis.

hysteresis is at the origin of several common observations such as the fact that a droplet on
an inclined wall does not always trickle down but reaches an equilibrium state or that some
liquid can be sustained in a capillary tube despite gravity.

The origin of this hysteresis is still extensively studied and remains a subject of de-
bate. However, the classical explanation is a consequence of a rough and/or chemically
nonhomogeneous wall, which results in amacroscopicvariation of the contact angle, its
microscopicvalue being imposed by the local affinity of the wall for the fluid. Indeed,
when a droplet moves on a chemically nonhomogeneous wall (Fig.18), for hydrodynamic
stability reasons, the “advancing” contact line tends to keep in contact with the material
whose contact angle is the greater, while the “receding” contact line tends to keep in contact
with the material whose contact angle is the lower. Given the general shape of the droplet
in Fig. 18, if the advancing contact angle wereθr , the interface would be locally convex.
The Laplace relation would induce a pressure gradient in the liquid such that the advancing
contact line would be pushed forward until the contact angle is backθa. Therefore, the
advancing contact line tends to be more in contact with the material whose contact angle
is θa than the other and the time-averaged advancing contact angle (the one observed) is
closed toθa. The same reasoning can be applied to the “receding” contact line (see [5, p. 76]
for further details).

Imposing a chemically nonhomogeneous boundary is particularly easy in the second
gradient method: the boundary condition (44) must vary spatially, as shown in Fig. 18
where the contact angle is a piecewise constant function of space. However, for numerical
convenience, this function is chosen to be more regular,

θ(x) = θeq+1θ cos

(
2π

x

d

)
, (45)

FIG. 18. Sketch of a droplet moving from the right to the left on a wall made of two materials, whose
equilibrium contact angles areθa andθr , respectively.
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FIG. 19. Time sequence of the evolution of a drop on an inclined wall (45◦). Last picture corresponds to
the equilibrium state. Fluid: water;T = 618.8 K; ρv = 103 kg m−3; ρl = 592 kg m−3; σ = 4.66× 10−3 N m−1;
equation of state: modified such thath = 0.1 mm; λ = 2.83× 10−12 Pa m8 kg−3; 6× 2 mm rectangle; 300×
100 grid; initial diameter: 2 mm; gravity: 9.81 m s−2.

whereθeq is the equilibrium contact angle,d is a distance of the order of the interface
thickness (at least equal to 2h), and1θ is the amplitude of the contact angle variation.

The boundary condition (44) is therefore replaced by

n · ∇ρ = σ

λ(ρl − ρv) cos[θ(x)]. (46)

Imposing such a boundary condition, we can numerically solve for the time evolution of
a droplet on a inclined wall, and these results are presented in Fig. 19. The wall properties
of this computation are such thatθeq = 90◦, d = 4h, and1θ = 45◦. It is observed that the
contact lines move erratically, which corresponds to the physical explanation of the contact
angle hysteresis presented above. This erratic movement is at the origin of the capillary
wave observed on the interface in the Fig. 19b that was created by the fast movement of
the advancing contact line that then stopped moving for a while. The last frame is the
equilibrium state obtained, which corresponds to what is commonly observed.

6. CONCLUSIONS AND PERSPECTIVES

In this paper, we have shown how the second gradient theory could be used for the numer-
ical simulation of liquid–vapor flows with phase change. We have in particular established
the equations of evolution of a fluid endowed with internal capillarity by using the principle
of virtual work, which we consider to be the most coherent way to derive these equations.
Once the equations have been formally established, the numerical application of this theory
has been addressed. In particular it is shown that the thermodynamic behavior of the fluid
must be modified and the interfaces must be artificially enlarged. Then the interfaces can
be resolved by a grid of reasonable size, without changing the surface tension. We show
that the functionP(ρ) must display strong variation near the binodal curve in order not
to change the sound speed within the phases and to keep some thermodynamic relations
between the pressures inside and outside an inclusion at equilibrium.

It is also shown that, according to the second gradient theory, the thickness of an in-
terface as well as its surface tension are functions of the mass flux and the temperature
gradient across the interface. These variations are shown to increase with the thickness of
the interface, which means that limited heat and mass transfers across an interface can be
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simulated using this method. However, we emphasize that these limitations are reasonably
well understood and that some adaptations could therefore be developed in the future to
avoid these limitations.

Despite these limitations, we have shown through various examples of applications that
the method can be successfully used in one as well as two dimensions. We believe that
the main advantages of the method presented are that it has a clear and strong theoretical
justification and that topological changes and moving contact lines are handled very easily.
Moreover, going from two dimensions to three dimensions is straightforward compared to
other methods.

Nevertheless, work still has to be done to make sure that this method can be accurately ap-
plied in a wide range of applications. In addition, other more fundamental issues will also be
addressed such as the influence of the enlargement of the interface on the contact line motion
and the dependence of the results on the numerical resolution and the interface thickness.
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